Magnetism modulation and conductance quantization in a gadolinium oxide memristor.

Phys Chem Chem Phys

CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Published: November 2020

The requests for higher information storage density, greater data processing power, and memory-centric computing capability in the current big data era are motivating global research interests in novel solid-state electronic devices that can unite the electron charge and spin degrees of freedom. Herein, the simultaneous realization of magnetism modulation and conductance quantization in a single gadolinium oxide memristor is reported. A remarkable enhancement of >170% in saturation magnetization at room temperature, accompanied by the emergence of a clear magnetoresistance behavior at low temperature, was obtained after setting the memristor from the initial high resistance state (HRS) into the low resistance state (LRS). By carefully resetting the memristor from the LRS into the HRS, up to 32 quantized conductance states with good repeatability and stability were observed, which could possibly allow achieving 5 bit storage in a single memory cell in the future. Moreover, the resistive switching mechanism of the memristor was thoroughly investigated with the help of temperature-dependent resistance tests and high-resolution transmission electron microscopy examination. This work could provide a powerful approach to design future multi-field modulated, high-performance information devices with integrated data storage, sensing, as well as processing functions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03767bDOI Listing

Publication Analysis

Top Keywords

magnetism modulation
8
modulation conductance
8
conductance quantization
8
gadolinium oxide
8
oxide memristor
8
resistance state
8
memristor
5
quantization gadolinium
4
memristor requests
4
requests higher
4

Similar Publications

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand.

J Am Chem Soc

January 2025

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.

View Article and Find Full Text PDF

DNAzyme assisted single amplification for FEN1 activity detection using a personal glucose meter.

Anal Chim Acta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:

Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.

View Article and Find Full Text PDF

Iron-Based Nanomaterials for Modulating Tumor Microenvironment.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.

Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: The 18F-AV-1451 radioligand enables in-vivo identification of tau neurofibrillary tangles that are considered as biomarkers of neurodegeneration in Alzheimer Disease (AD). However, off-target radioligand binding is also observed in basal ganglia, known as an iron-rich region. Hence, it is important to distinguish between radioligand-identified tissue neurodegeneration and iron-related radioligand binding effects.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry, University of Cambridge, Cambridge, UK.

Background: Poor sleep is emerging as an important and modifiable risk factor in the development of dementia. The hypothalamus is the only neuroanatomical site of orexin-producing neurones in the brain and modulates sleep and wakefulness behaviour. Due its small size and lack of defined contrast in conventional neuroimaging acquisitions, relatively little evidence exists as to the role of the hypothalamus in humans in neurodegeneration and sleep quality, and whether it may have mechanistic importance and biomarker candidacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!