A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parametric study of laser-induced damage growth in fused silica optics with large beams at 351  nm. Part 1: stochastic approach. | LitMetric

Both the rate and probability of the growth of laser-induced damage sites in fused silica depend on several parameters. In this two-part paper, we investigate the impact of the laser parameters on damage growth. In Part I, we present statistical measurements of damage growth at different energy densities, pulse durations, and initial damage sizes. In Part II, we use fractal analysis to quantify the evolution of the damage morphology as a function of the laser energy density and pulse duration. Damage initiation is performed using phase masks. These phase masks allow for the initiation of evenly spaced damage sites that can then be exposed to the same laser beam, and, therefore, the same pulse duration. This configuration allowed the study of damage growth in a large population of more than 5000 damage sites. The results clearly indicate that both the probability and the rate at which a damage site will grow strongly depend on the laser pulse duration. These differences can be explained by hypotheses that we have developed from an observation of the bulk damage morphology. Such observations will be presented in detail in the second part of this article.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.400691DOI Listing

Publication Analysis

Top Keywords

damage growth
16
damage
12
damage sites
12
pulse duration
12
laser-induced damage
8
fused silica
8
damage morphology
8
phase masks
8
growth
5
parametric study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!