Bronchial asthma is a chronic disease which is currently treated using various inhalants. However, the medication adherence with the inhalants is poor due to complex procedure to use them along with frequent dosing. In this paper, we have developed tulobuterol loaded Pluronic® F127-reduced graphene oxide transdermal hydrogel to sustain the release of tulobuterol to manage asthma for days. The synthesis of Pluronic F127-reduced graphene oxide was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The transmission electron microscope showed wrinkled flat nano sheets. The hydrogel showed sufficient mechanical properties for topical application and was safe in the skin irritation study (rabbit model). The release data demonstrated the ability of reduced graphene oxide to sustain the release of tulobuterol for 72 h, due to strong π-π interaction between drug and graphene oxide. The pharmacokinetic profile in Sprague-Dawley rat model confirmed the potential of tulobuterol-Pluronic F127-reduced graphene oxide hydrogel to sustain the release of tulobuterol for effective management of asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2020.1849921DOI Listing

Publication Analysis

Top Keywords

graphene oxide
24
release tulobuterol
16
f127-reduced graphene
12
sustain release
12
manage asthma
8
hydrogel sustain
8
graphene
6
oxide
6
tulobuterol
5
sustained release
4

Similar Publications

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

Chemical etching of silicon assisted by graphene oxide under negative electric bias.

Nanoscale Adv

January 2025

Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Yoshida-honmachi, Sakyo-ku Kyoto 606-8501 Japan

Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid.

View Article and Find Full Text PDF

Correction: Graphene oxide-based silsesquioxane-crosslinked networks - synthesis and rheological behavior.

RSC Adv

January 2025

College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University Shenzhen 518060 PR China +86-0755-26536239 +86-0755-26538236.

[This corrects the article DOI: 10.1039/C7RA02764H.].

View Article and Find Full Text PDF

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

FTW SERS probes with Ag NCs-GO composite structure excited by evanescent wave for in situ detection of permethrin.

Anal Chim Acta

March 2025

Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:

Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.

Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!