The COVID-19 pandemic has imposed unprecedented health and socioeconomic challenges on public health, disrupting it on a global scale. Given that women and children are widely considered the most vulnerable in the times of emergency, whether in war or during a pandemic, the current pandemic has also severely disrupted access to reproductive and child health services. Despite this, data on the effect of the pandemic on pregnant women and newborns remain scarce, and gender-disaggregated indicators of mortality and morbidity are not available. In this context, we suggest the implementation of a gendered approach to ensure the specific needs of women and their newborns are considered during the development of COVID-19 vaccines. Taking into account gender-based biological differences, the inclusion of pregnant and lactating mothers in clinical trials for the development of COVID-19 vaccines is of vital importance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641604 | PMC |
http://dx.doi.org/10.1080/21645515.2020.1826249 | DOI Listing |
This longitudinal study aimed to examine the long-term effects of Reminiscing and Emotion Training (RET), child maltreatment, and the COVID-19 pandemic on maternal elaboration and sensitive guidance during reminiscing. RET was developed to improve maternal elaborative and emotionally sensitive reminiscing among maltreating mothers of preschool-aged children. Of the original 248 mothers and their preschool-aged children who participated in the trial of RET, which included 165 families with maltreatment who were randomized to receive RET ( = 83) or a case management community standard condition (CS, = 82), and a group of demographically similar families with no history of child maltreatment, nonmaltreatment comparison (NC, = 83), 166 families participated in an assessment 5 years postintervention (Time 5; T5) at which children were aged 8-12 years.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, 38408144, Brazil.
Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFAnal Chem
January 2025
SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
The need for accurate and simultaneous diagnosis of multiple respiratory infectious diseases has become increasingly critical due to ongoing viral mutations and the similarity of symptoms among various viruses. Here, we have advanced our detection capabilities by developing a multiplex lateral flow immunoassay (LFA) platform that integrates oligonucleotides and antibodies, enabling the simultaneous detection of five respiratory viruses: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (FluA), Influenza B (FluB), Respiratory syncytial virus (RSV), and Adenovirus (ADV), on a single membrane. By applying the oligonucleotide and antibody-conjugated AuNPs, the platform enables highly sensitive and specific detection.
View Article and Find Full Text PDFMikrobiyol Bul
October 2024
The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands.
As the number of coronavirus diseases-2019 (COVID-19) cases have decreased and measures have started to be implemented at an individual level rather than in the form of social restrictions, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still maintains its importance and has already taken its place in the spectrum of agents investigated in multiplex molecular test panels for respiratory tract infections in routine diagnostic use. In this study, we aimed to present mutation analysis and clade distribution of whole genome sequences from randomly selected samples that tested positive with SARS-CoV-2 specific real-time reverse transcription polymerase chain reaction (rRT-PCR) test at different periods of the pandemic in our laboratory with a commercial easy-to-use kit designed for next-generation sequencing systems. A total of 84 nasopharyngeal/oropharyngeal swab samples of COVID-19 suspected patients which were sent for routine diagnosis to the medical microbiology laboratory and detected as SARSCoV-2 RNA positive with rRT-PCR were randomly selected from different periods for sequence analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!