CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.

Methods Mol Biol

Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.

Published: March 2021

AI Article Synopsis

  • CRISPR/Cas9 is a powerful tool for editing plant genomes, allowing scientists to study gene functions and improve plant traits.
  • The system uses Cas9 endonuclease to create double strand breaks (DSBs) in specific DNA sequences, which can then be repaired by cellular pathways, enabling gene knockouts or replacements.
  • The chapter outlines a detailed method for conducting gene mutations and precise base editing in the Arabidopsis genome, with an emphasis on the steps involved in target gene selection, sgRNA design, vector construction, transformation, and analysis of results, which can also apply to other plants like rice.

Article Abstract

CRISPR/Cas9 system has emerged as a powerful genome engineering tool to study gene function and improve plant traits. Genome editing is achieved at a specific genome sequence by Cas9 endonuclease to generate double standard breaks (DSBs) directed by short guide RNAs (sgRNAs). The DSB is repaired by error-prone nonhomologous end joining (NHEJ) or error-free homology-directed repair (HDR) pathways, resulting in gene mutation or sequence replacement, respectively. These cellular DSB repair pathways can be exploited to knock out or replace genes. Also, cytidine or adenine base editors (CBEs or ABEs) fused to catalytically dead Cas9 (dCas9) or nickase Cas9 (nCas9) are used to perform precise base editing without generating DSBs. In this chapter, we describe a detailed procedure to carry out single/multiple gene mutations and precise base editing in the Arabidopsis genome by using CRISPR/Cas9-based system. Specifically, the steps of target gene selection, sgRNA design, vector construction, transformation, and analysis of transgenic lines are described. The protocol is potentially adaptable to perform genome editing in other plant species such as rice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0880-7_5DOI Listing

Publication Analysis

Top Keywords

genome editing
12
precise base
8
base editing
8
editing
5
genome
5
crispr/cas9-based genome
4
editing toolbox
4
toolbox arabidopsis
4
arabidopsis thaliana
4
thaliana crispr/cas9
4

Similar Publications

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

[Gene editing is changing the treatment of hereditary diseases].

Lakartidningen

January 2025

docent, verksamhetschef, Karolinska centrum för cellterapi (KCC), Karolinska universitetssjukhuset, Stockholm; Karolins-ka ATMP-centrum; institutionen för laboratorie-medicin, Karolinska institutet.

Gene editing is a novel technology within gene therapy, which changes sequences in chromosomal DNA with precision. Even if there are alternative strategies, the Nobel Prize-winning CRISPR/Cas technology has become the dominating principle. During recent years base editing and prime editing, permitting editing without DNA double-strand breaks, have been developed.

View Article and Find Full Text PDF

Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics.

Mol Pharm

January 2025

ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.

Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!