Nondestructive capture, release, and detection of circulating tumor cells with cystamine-mediated folic acid decorated magnetic nanospheres.

J Mater Chem B

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315221, P. R. China.

Published: November 2020

Circulating tumor cell (CTC) detection and enumeration have been considered as a noninvasive biopsy method for the diagnosis, characterization, and monitoring of various types of cancers. However, CTCs are exceptionally rare, which makes CTC detection technologically challenging. In the past few decades, much effort has been focused on highly efficient CTC capture, while the activity of CTCs has often been ignored. Here, we develop an effective method for nondestructive CTC capture, release, and detection. Folic acid (FA), as a targeting molecule, is conjugated on magnetic nanospheres through a cleavable disulfide bond-containing linker (cystamine) and a polyethylene glycol (PEG2k) linker, forming MN@Cys@PEG2k-FA nanoprobes, which can bind with folate receptor (FR) positive CTCs specifically and efficiently, leading to the capture of CTCs with an external magnetic field. When approximately 150 and 10 model CTCs were spiked in 1 mL of lysis blood, 93.1 ± 2.9% and 80.0 ± 9.7% CTCs were recovered, respectively. In total, 81.3 ± 2.6% captured CTCs can be released from MN@Cys@PEG2k-FA magnetic nanospheres by treatment with dithiothreitol. The released CTCs are easily identified from blood cells for specific detection and enumeration combined with immunofluorescence staining with a limit of detection of 10 CTC mL-1 lysed blood. Moreover, the released cells remain healthy with high viability (98.6 ± 0.78%) and can be cultured in vitro without detectable changes in morphology or behavior compared with healthy untreated cells. The high viability of the released CTCs may provide the possibility for downstream proteomics research of CTCs; therefore, cultured CTCs were collected for proteomics. As a result, 3504 proteins were identified. In conclusion, the MN@Cys@PEG2k-FA magnetic nanospheres prepared in this study may be a promising tool for early-stage cancer diagnosis and provide the possibility for downstream analysis of CTCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb01091jDOI Listing

Publication Analysis

Top Keywords

magnetic nanospheres
16
ctcs
12
capture release
8
release detection
8
circulating tumor
8
folic acid
8
ctc detection
8
detection enumeration
8
ctc capture
8
mn@cys@peg2k-fa magnetic
8

Similar Publications

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

M13 bacteriophage based fluorescence immunoassay against food allergens of Ara h 3 and Mac i 1.

Food Chem

December 2024

Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.

View Article and Find Full Text PDF

Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized FeO-MnO@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF).

View Article and Find Full Text PDF

We discuss the possibility of self-hybridisation in high-index dielectric nanoparticles, where Mie modes of electric or magnetic type can couple to the interband transitions of the material, leading to spectral anticrossings. Starting with an idealised system described by moderately high constant permittivity with a narrow Lorentzian, in which self-hybridisation is visible for both plane-wave and electron-beam excitation, we embark on a quest for realistic systems where this effect should be visible. We explore a variety of spherical particles made of traditional semiconductors such as Si, GaAs, and GaP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!