The aim of this study was to determine an in vitro evaluation method that could directly predict in vivo performance of decellularized tissue for cardiovascular use. We hypothesized that key factors for in vitro evaluation would be found by in vitro assessment of decellularized aortas that previously showed good performance in vivo, such as high patency. We chose porcine aortas, decellularized using three different decellularization methods: sodium dodecyl-sulfate (SDS), freeze-thawing, and high-hydrostatic pressurization (HHP). Immunohistological staining, a blood clotting test, scanning electron microscopy (SEM) analysis, and recellularization of endothelial cells were used for the in vitro evaluation. There was a significant difference in the remaining extracellular matrix (ECM) components, ECM structure, and the luminal surface structure between the three decellularized aortas, respectively, resulting in differences in the recellularization of endothelial cells. On the other hand, there was no difference observed in the blood clotting test. These results suggested that the blood clotting test could be a key evaluation method for the prediction of in vivo performance. In addition, evaluation of the luminal surface structure and the recellularization experiment should be packaged as an in vitro evaluation because the long-term patency was probably affected. The evaluation approach in this study may be useful to establish regulations and a quality management system for a cardiovascular prosthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0tb01830a | DOI Listing |
Nat Prod Res
January 2025
School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China.
The extract of the stems of R. Br. yielded three new terpenes () including two diterpenes and one triterpene, named euryachins C-E, as well as three known diterpenes ().
View Article and Find Full Text PDFmSphere
December 2024
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.
is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
The rat S9 microsome fraction is commonly used to assess compound metabolite formation during genotoxicity assessments. However, methods using S9 have not been standardized for genotoxicity studies, and different experimental methods are used at various facilities. Therefore, this study investigated whether the differences between the two experimental conditions (1) S9 inducers, phenobarbital + beta-naphthoflavones vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!