Soy oil conjugated linoleic acid production with solar light photoisomerization.

J Food Sci

Department of Dairy Engineering, College of Dairy Technology, PVNR Telangana Veterinary University, Kamareddy, Telangana, 503111, India.

Published: December 2020

The objectives were (1) to produce soy oil conjugated linoleic acid (CLA) triacylglycerides in large quantities with solar light photoisomerization, utilizing iodine as a photosensitizer, (2) to study the temperature variation in the photoisomerized oil during various hours of the day, and (3) to study the variations in solar light intensity during various hours of the day. A 0.5% iodine containing soy oil in glass box with a glass lid was photoisomerized, under natural solar light for 0, 11, and 27 days, and CLA isomers were determined with gas chromatography with flame ionization detector. After 27 days of solar light photoisomerization, the cis-9, trans-11 CLA; other cis, trans CLA; trans-10, cis-12 CLA; trans, trans CLA, and total CLA were found to be 0.62 ± 0.05%, 1.04 ± 0.09%, 0.54 ± 0.11%, 6.16 ± 0.68%, and 8.37 ± 0.90%, respectively. The concentration of CLA isomers between 0 and 11 days was significantly different (p < .05), and the concentration of CLA isomers between 0 and 27 days was also significantly different (p < .05). There is no significant difference (p > .05) in CLA concentration between 11 and 27 days treatment. The CLA was not found in control soy oil samples. The CLA isomers were measured with GDFID in 45 min instead of 120min. The temperature of the edible oil in glass boxes ranged from 26 °C (8 a.m.) to 56 °C (1 p.m.). The light intensity ranged from 4,146 lux (7 p.m.) to 95,490 lux (12 p.m.). Glass lid on the glass box affected light transmission to a small but statistically significant extent (p < .05). The CLA isomers could be energy efficiently and inexpensively produced in soy oil by solar light photoisomerization, at low temperature and without needing expensive reactor vessels or catalysts. PRACTICAL APPLICATION: CLA was produced effectively with the iodine sensitized solar light photoisomerization. CLA is produced in large quantities, inexpensively, for possible food additive applications. Produced CLA is in the form of stable triacylglycerides.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15515DOI Listing

Publication Analysis

Top Keywords

solar light
28
soy oil
20
light photoisomerization
20
cla isomers
20
cla
16
light
9
oil conjugated
8
conjugated linoleic
8
linoleic acid
8
large quantities
8

Similar Publications

Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).

View Article and Find Full Text PDF

This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.

View Article and Find Full Text PDF

Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Materials Science and Engineering, NO.1088,Xueyuan Avenue,Nanshan District, 518055, Shenzhen, CHINA.

Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.

View Article and Find Full Text PDF

In-Situ Cross-Linked Polymers for Enhanced Thermal Cycling Stability in Flexible Perovskite Solar Cells.

Angew Chem Int Ed Engl

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.

Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.

View Article and Find Full Text PDF

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!