The resistance of cancer cells to chemotherapy has presented a formidable challenge. The current research aims at evaluating whether silencing of the cisplatin efflux promoter gene ABCC3 using siRNA co-loaded with the drug in a nanocarrier improves its efficacy in non-small cell lung cancer (NSCLC). Hybrid nanocarriers (HNCs) comprising lipids and poly(lactic acid-polyethylene glycol) di-block copolymer (PEG-PLA) were prepared for achieving the simultaneous delivery of cisplatin caprylate and ABCC3-siRNA to the cancer cells. PEGylation of the formulated HNCs was carried out using post-insertion technique for imparting long circulation characteristics to the carrier. The optimized formulation exhibited an entrapment efficiency of 71.9 ± 2.2% and 95.83 ± 0.39% for cisplatin caprylate and siRNA respectively. Further, the HNC was found to have hydrodynamic diameter of 153.2 ± 1.76 nm and + 25.39 ± 0.49 mV zeta potential. Morphological evaluation using cryo transmission electron microscopy confirmed the presence of lipid bilayer surrounding the polymeric core in HNCs. The in vitro cellular uptake studies showed improved uptake, while cell viability studies of the co-loaded formulation in A549 cell-line indicated significantly improved cytotoxic potential when compared with drug solution and drug-loaded HNCs; cell cycle analysis indicated increased percentage of cell arrest in G2-M phase compared with drug-loaded HNCs. Further, the gene knock-down study showed that silencing of ABCC3 mRNA might be improved in vitro efficacy of the formulation. The optimized cisplatin and ABCC3 siRNA co-loaded formulation presented significantly increased half-life and tumour regression in A549 xenograft model in BALB/c nude mice. In conclusion, siRNA co-loaded formulation presented reduced drug resistance and increased efficacy, which might be promising for the current cisplatin-based treatments in NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-020-00867-5 | DOI Listing |
Adv Mater
December 2024
Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable.
View Article and Find Full Text PDFPharmaceutics
September 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
Skin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects.
View Article and Find Full Text PDFBiomed Mater
October 2024
Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China.
Gene therapy often fails due to enzyme degradation and low transfection efficiency, and single gene therapy usually cannot completely kill tumor cells. Several studies have reported that tripartite motif-containing protein 37 (TRIM37) plays a significant role in promoting the occurrence and development of triple negative breast cancer (TNBC). Herein, we constructed siTRIM37 and IR780 co-loaded nanobubbles (NBs) to achieve the combination of gene therapy and sonodynamic therapy (SDT) against TNBC.
View Article and Find Full Text PDFDrug Dev Ind Pharm
September 2024
Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China.
Introduction: Triple-negative breast cancer (TNBC) is characterized by higher malignancy and mortality and is prone to distant metastasis, among which bone is the most common site. It's urgent to explore new strategies for the treatment of TNBC and its bone metastases.
Methods: A tumor environment responsive vector, poly-(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly-(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA), was constructed to co-delivery transforming growth factor-β1 (TGF-β1) siRNA and forkhead box M1 (FOXM1) siRNA in MDA-MB-231 cells.
Saudi Pharm J
September 2024
Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!