Protective role of fermented mulberry leave extract in LPS‑induced inflammation and autophagy of RAW264.7 macrophage cells.

Mol Med Rep

Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea.

Published: December 2020

Mulberry leaves have antioxidant activity and anti‑inflammatory effects in several types of cells. However, the efficacy of mulberry leaves fermented with Cordyceps militaris remains unknown. Therefore, the present study aimed to investigate whether the ethanol extracts of mulberry leaves fermented with C. militaris (EMfC) can prevent lipopolysaccharide (LPS)‑induced inflammation and autophagy in macrophages. To achieve this, RAW264.7 cells pretreated with three different dose of EMfCs were subsequently stimulated with LPS, and examined for alterations in the regulatory factors of inflammatory responses and key parameters of the autophagy signaling pathway. EMfC treatment inhibited the generation of reactive oxidative species; however, significant activity was observed for 2,2‑diphenyl‑1‑picrylhydrazyl (DPPH) radical scavenging (IC50=579.6703 mg/ml). Most regulatory factors in inflammatory responses were significantly inhibited following treatment with EMfC, without any significant cellular toxicity. EMfC‑treated groups exhibited marked suppression of nitrogen oxide (NO) levels, mRNA expression levels of iNOS/COX‑2, levels of all inflammatory cytokines (TNF‑α, IL‑1β and IL‑6) and phosphorylation of MAPK members, as well as recovery of cell cycle progression. Furthermore, similar effects were observed in the LPS‑induced autophagy signaling pathway of RAW264.7 cells. The expression levels of microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and Beclin exhibited a dose‑dependent decrease in the EMfC+LPS‑treated groups compared with in the Vehicle+LPS‑treated group, whereas the phosphorylation of PI3K and mTOR were enhanced in a dose‑dependent manner in the same groups. Overall, the results of the present study provide evidence that exposure to EMfC protects against LPS‑induced inflammation and autophagy in RAW264.7 cells. These results indicated that EMfC is a potential candidate for treatment of inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646855PMC
http://dx.doi.org/10.3892/mmr.2020.11563DOI Listing

Publication Analysis

Top Keywords

inflammation autophagy
12
mulberry leaves
12
raw2647 cells
12
lps‑induced inflammation
8
autophagy raw2647
8
leaves fermented
8
regulatory factors
8
factors inflammatory
8
inflammatory responses
8
autophagy signaling
8

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

The role of celastrol in inflammation and diseases.

Inflamm Res

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.

Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.

View Article and Find Full Text PDF

The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate the beneficial role of resveratrol in treating non-alcoholic steatohepatitis (NASH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!