Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene.

Proc Natl Acad Sci U S A

Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637.

Published: November 1987

The SPO11 gene, required for meiotic recombination in Saccharomyces cerevisiae, has been cloned by direct selection for complementation of the spo11-1 phenotype: lack of meiotic recombination and low spore viability. DNA sequencing indicates that the gene encodes a 398-amino acid protein having a predicted molecular mass of 45.3 kDa. There is no significant similarity between the SPO11 protein and other protein sequences, including those from genes known to be involved in DNA recombination or repair. Strains bearing a disruption allele are viable, indicating that SPO11 is dispensable for mitotic growth. RNA analyses demonstrate that SPO11 produces a 1.5-kilobase transcript that is developmentally regulated and expressed early in the sporulation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC299471PMC
http://dx.doi.org/10.1073/pnas.84.22.8035DOI Listing

Publication Analysis

Top Keywords

meiotic recombination
8
isolation dna
4
dna sequence
4
sequence regulation
4
regulation meiosis-specific
4
meiosis-specific eukaryotic
4
recombination
4
eukaryotic recombination
4
recombination gene
4
spo11
4

Similar Publications

Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.

View Article and Find Full Text PDF

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs.

View Article and Find Full Text PDF

Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!