SARS-CoV-2 Testing Disparities in Massachusetts.

medRxiv

Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts (Dryden-Peterson, Velásquez, Lockman, Ojikutu); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health (Dryden-Peterson, Lockman), Botswana Harvard AIDS Institute (Dryden-Peterson, Lockman), Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts (Velásquez, Ojikutu); Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts (Velásquez); Department of Public Health and Community Medicine, Tufts University School of Medicine (Stopka); Tufts Clinical and Translational Science Institute (Stopka); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Davey).

Published: November 2020

Objective: Early deficiencies in testing capacity contributed to poor control of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the context of marked improvement in SARS-CoV-2 testing infrastructure, we sought to examine the alignment of testing with epidemic intensity to mitigate subsequent waves of COVID-19 in Massachusetts.

Methods: We compiled publicly available weekly SARS-CoV-2 molecular testing data for period (May 27 to October 14, 2020) following the initial COVID-19 wave. We defined testing intensity as weekly SARS-CoV-2 tests performed per 100,000 population and used weekly test positivity (percent of tests positive) as a measure of epidemic intensity. We considered optimal alignment of testing resources to be matching community ranks of testing and positivity. In communities with a lower rank of testing than positivity in a given week, the testing gap was calculated as the additional tests required to achieve matching ranks. Multivariable Poisson modeling was utilized to assess for trends and association with community characteristics.

Results: During the observation period, 4,262,000 tests were reported in Massachusetts and the misalignment of testing with epidemic intensity increased. The weekly testing gap increased 9.0% per week (adjusted rate ratio [aRR]: 1.090, 95% confidence interval [CI]: 1.08-1.10). Increasing levels of community socioeconomic vulnerability (aRR: 1.35 per quartile increase, 95% CI: 1.23-1.50) and the highest quartile of minority and language vulnerability (aRR: 1.46, 95% CI 0.96-1.49) were associated with increased testing gaps, but the latter association was not statistically significant. Presence of large university student population (>10% of population) was associated with a marked decrease in testing gap (aRR 0.21, 95% CI: 0.12-0.38).

Conclusion: These analyses indicate that despite objectives to promote equity and enhance epidemic control in vulnerable communities, testing resources across Massachusetts have been disproportionally allocated to more affluent communities. Worsening structural inequities in access to SARS-CoV-2 testing increase the risk for another intense wave of COVID-19 in Massachusetts, particularly among vulnerable communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654915PMC
http://dx.doi.org/10.1101/2020.11.02.20224469DOI Listing

Publication Analysis

Top Keywords

testing
15
sars-cov-2 testing
12
epidemic intensity
12
testing gap
12
alignment testing
8
testing epidemic
8
weekly sars-cov-2
8
testing resources
8
testing positivity
8
vulnerability arr
8

Similar Publications

Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants.

Plant Biotechnol J

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China.

The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5'-TTN-3' protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease.

View Article and Find Full Text PDF

We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model).

View Article and Find Full Text PDF

Serologic and Molecular Evidence of Arboviruses in Nonhuman Primates in Northeast Brazil.

Ecohealth

January 2025

Universidade Federal do Vale do São Francisco, Rodovia BR-407, KM 12, Lote 543, Sem Número, Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil.

Arbovirus surveillance in marmosets (Callithrix spp.) that live close to humans helps identify viral circulation in the environment and contributes to public health. We investigated the exposure to arboviral infections in 47 captive and free-living Callithrix from urban and peri-urban areas in the semiarid region of northeastern Brazil (SNB) in 2018.

View Article and Find Full Text PDF

Purpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!