The deadly pandemic, coronavirus disease 2019 (COVID-19), caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has paralyzed the world. Although significant methodological advances have been made in the field of viral detection/diagnosis with 251 in vitro diagnostic tests receiving emergency use approval by the US-FDA, little progress has been made in identifying curative or preventive therapies. This review discusses the current trends and potential future approaches for developing COVID-19 therapeutics, including repurposed drugs, vaccine candidates, immune-modulators, convalescent plasma therapy, and antiviral nanoparticles/nanovaccines/combinatorial nanotherapeutics to surmount the pandemic viral strain. Many potent therapeutic candidates emerging via drug-repurposing could significantly reduce the cost and duration of anti-COVID-19 drug development. Gene/protein-based vaccine candidates that could elicit both humoral and cell-based immunity would be on the frontlines to prevent the disease. Many emerging nanotechnology-based interventions will be critical in the fight against the deadly virus by facilitating early detection and enabling target oriented multidrug therapeutics. The therapeutic candidates discussed in this article include remdesivir, dexamethasone, hydroxychloroquine, favilavir, lopinavir/ritonavir, antibody therapeutics like gimsilumab and TJM2, anti-viral nanoparticles, and nanoparticle-based DNA and mRNA vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645867PMC
http://dx.doi.org/10.1002/adtp.202000172DOI Listing

Publication Analysis

Top Keywords

repurposed drugs
8
vaccine candidates
8
therapeutic candidates
8
drugs molecular
4
molecular vaccines
4
vaccines immune-modulators
4
immune-modulators nanotherapeutics
4
nanotherapeutics treat
4
treat prevent
4
prevent covid-19
4

Similar Publications

NetSDR: Drug repurposing for cancers based on subtype-specific network modularization and perturbation analysis.

Biochim Biophys Acta Mol Basis Dis

January 2025

MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:

Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.

View Article and Find Full Text PDF

Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.

View Article and Find Full Text PDF

The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088.

View Article and Find Full Text PDF

Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.

Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Repurposing the Antidiabetic Drugs Glyburide, Gliquidone, and Glipizide in Combination with Benznidazole for Infection.

Pharmaceuticals (Basel)

December 2024

Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico.

Infection with the protozoan parasite causes human Chagas disease. Benznidazole (BNZ) and nifurtimox are the current drugs for the treatment; however, they induce severe adverse side effects in patients; therefore, there is a need to improve the treatment effectiveness and efficiency of these drugs for its safer use. : Glyburide, glipizide, and gliquidone, hypoglycemic drugs for diabetes treatment, were previously predicted to bind to dihydrofolate reductase-thymidylate synthase from by in silico docking analysis; they also showed antiproliferative effects against epimastigotes, the stage of the insect vector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!