As an essential trace element in the human body, transitional metal copper (Cu) ions are the bioactive components within the body featuring dedicated biological effects such as promoting angiogenesis and influencing lipid/glucose metabolism. The recent substantial advances of nanotechnology and nanomedicine promote the emerging of distinctive Cu-involved biomaterial nanoplatforms with intriguing theranostic performances in biomedicine, which are originated from the biological effects of Cu species and the physiochemical attributes of Cu-composed nanoparticles. Based on the very-recent significant progresses of Cu-involved nanotheranostics, this work highlights and discusses the principles, progresses, and prospects on the elaborate design and rational construction of Cu-composed functional nanoplatforms for a diverse array of biomedical applications, including photonic nanomedicine, catalytic nanotherapeutics, antibacteria, accelerated tissue regeneration, and bioimaging. The engineering of Cu-based nanocomposites for synergistic nanotherapeutics is also exemplified, followed by revealing their intrinsic biological effects and biosafety for revolutionizing their clinical translation. Finally, the underlying critical concerns, unresolved hurdles, and future prospects on their clinical uses are analyzed and an outlook is provided. By entering the "Copper Age," these Cu-involved nanotherapeutic modalities are expected to find more broad biomedical applications in preclinical and clinical phases, despite the current research and developments still being in infancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610332PMC
http://dx.doi.org/10.1002/advs.202001549DOI Listing

Publication Analysis

Top Keywords

biological effects
12
cu-involved nanotheranostics
8
biomedical applications
8
coppery age
4
age copper
4
cu-involved
4
copper cu-involved
4
nanotheranostics essential
4
essential trace
4
trace element
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!