mTOR inhibitors are anticancer agents affecting mTOR/AKT/PI3K pathway that is one of the most important in human cancer cells. Hyperactivation of mTOR/AKT/PI3K and overexpression of this pathway members are frequently reported in uterine sarcoma and carcinosarcoma. Present study is aimed to assess the activity of the two mTOR inhibitors (rapamycin - RAP and sapanisertib - MLN) as a single agent and combined with gemcitabine (GEM, one of substances commonly used in systemic anticancer treatment) in uterine sarcoma and carcinosarcoma models. SK-UT-1 and SK-UT1-B (uterine carcinosarcoma), MES-SA (leiomyosarcoma) and ESS-1 (endometrial stromal sarcoma) cell lines were used. An MTT assay was performed to examine the cytotoxicity of RAP, MLN and mixtures: RAP+MLN, RAP+GEM, MLN+GEM against these cells. The interactions between tested compounds were assessed in isobolographic analysis. Carcinosarcoma cell lines (both SK-UT-1 and SK-UT-1B) do not respond to RAP and respond relatively weakly to MLN treatment. Additive and supraadditive effects were noted for combined treatment with GEM and MLN. Endometrial stromal sarcoma cell line (ESS-1) occured to be sensitive to both RAP and MLN, but the response was stronger for MLN. Additive effect of all tested drug combinations was observed for ESS-1. Leiomyosarcoma cell line (MES-SA) was found sensitive to both mTOR inhibitors. Additive effects in combinations of GEM, RAP and MLN were observed, what makes them promising for future preclinical and clinical trials. Additivity with slight tendency towards antagonism between GEM and MLN observed in MES-SA cell line is unexpected finding and might prompt the mechanistic research aimed to explain this phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646097PMC
http://dx.doi.org/10.7150/ijms.48187DOI Listing

Publication Analysis

Top Keywords

mtor inhibitors
16
rap mln
12
isobolographic analysis
8
uterine sarcoma
8
sarcoma carcinosarcoma
8
mln
8
endometrial stromal
8
stromal sarcoma
8
sarcoma cell
8
cell lines
8

Similar Publications

Introduction: Despite the rapid evolution in management of metastatic renal cell carcinoma (mRCC) over the past decade, challenges remain in accessing new therapies in some parts of the world. Despite therapeutic advancements, attrition rates remain persistently high. This study aims to assess the treatment patterns and attrition rates of patients with mRCC in oncology clinics across Turkey.

View Article and Find Full Text PDF

The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment.

Biochem Pharmacol

December 2024

Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium. Electronic address:

The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS).

View Article and Find Full Text PDF

A patent review of small molecular inhibitors targeting EGFR exon 20 insertion (Ex20ins) (2019-present).

Expert Opin Ther Pat

December 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.

Introduction: Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy.

Areas Covered: This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases.

View Article and Find Full Text PDF

KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge.

View Article and Find Full Text PDF

Dendritic cells (DCs) are essential for promoting T lymphocyte responses since they are specialist antigen-presenting cells. In order to maintain tolerance or initiate immune responses, DCs must be activated in a balanced and regulated manner via diverse signaling pathways. By using a variety of pharmacological components, we can interfere with their different signaling pathways such as the mammalian target of rapamycin (mTOR) to appropriately modulate DC activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!