Bivalves protect themselves from predators using both mechanical and behavioral defenses. While their shells serve as mechanical armor, bivalve shells also enable evasive behaviors such as swimming and burrowing. Therefore, bivalve shell shape is a critical determinant of how successfully an organism can defend against attack. Shape is believed to be related to shell strength with bivalve shell shapes converging on a select few morphologies that correlate with life mode and motility. In this study, mathematical modeling and 3D printing were used to analyze the protective function of different shell shapes against vertebrate shell-crushing predators. Considering what life modes different shapes permit and analyzing the strength of these shapes in compression provides insight to evolutionary and ecological tradeoffs with respect to mechanical and behavioral defenses. These empirical tests are the first of their kind to isolate the influence of bivalve shell shape on strength and quantitatively demonstrate that shell strength is derived from multiple shape parameters. The findings of this theoretical study are consistent with examples of shell shapes that allow escape behaviors being mechanically weaker than those which do not. Additionally, shell elongation from the umbo, a metric often overlooked, is shown to have significant effects on shell strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655838 | PMC |
http://dx.doi.org/10.1038/s41598-020-76358-x | DOI Listing |
Ecology
January 2025
Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA.
A growing body of theoretical studies and laboratory experiments has focused attention on reciprocal feedbacks between ecological and evolutionary processes. However, uncertainty remains about whether such eco-evolutionary feedbacks have an important or negligible influence on natural communities. Thus, recent discussions call for field experiments that explore whether selection on phenotypic variation within populations leads to contemporaneous effects on community dynamics.
View Article and Find Full Text PDFPeerJ
January 2025
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal.
The rough pen shell Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia.
View Article and Find Full Text PDFMar Environ Res
January 2025
Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Programa de Pós-Graduação em Sistemas Aquáticos Tropicais, Universidade Estadual de Santa Cruz (UESC), Salobrinho, 45662-900, Ihéus, Brazil. Electronic address:
Intertidal microhabitats provide special conditions to the organisms that inhabit them and to some of their morpho-protective characteristics. Tidal pools, under the influence of acidified freshwater, may affect the characteristics of the protective shells of prey and have repercussions on predation. The shells of Perumytilus purpuratus from such tidepools are more fragile than those of their counterparts from the vertical intertidal walls of the same area.
View Article and Find Full Text PDFDev Growth Differ
January 2025
Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
Recent molecular phylogenetic studies have raised two questions about the evolutionary history of the calcified exoskeleton of mollusks. The first question concerns the homology of the two types of skeleton: whether spicules and shell plates share an evolutionary origin. The second question is the homology of the shell plates between chitons and other mollusks, including gastropods and bivalves.
View Article and Find Full Text PDFPathogens
December 2024
Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea.
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!