Understanding the physics behind changes in dielectric permittivity and mechanical response with temperature and frequency in lead-free ferroic materials is a fundamental key to achieve optimal properties and to guarantee good performance in the technological applications envisaged. In this work, dense [Formula: see text] (BNT) electroceramics were prepared through solid-state reaction of high-grade oxide reagents, followed by sintering at high temperature (1393 K for 3 h). In good agreement with previous reports in the literature, the thermal behaviour of dielectric response from these BNT materials showed the occurrence of a high-temperature diffuse-like permittivity peak, whose origin has been so far controversial. Thermally stimulated depolarization current, impedance and mechanical spectroscopies measurements were here conducted, over a wide range of temperature and frequency, to get a deep insight into the mechanism behind of this event. The approach included considering both as-sintered and reduced BNT samples, from which it is demonstrated that the broad high-temperature dielectric peak originates from interfacial polarization involving oxygen vacancies-related space-charge effects that develop at the grain-to-grain contacts. This mechanism, that contributes to the anomalous behavior observed in the mechanical response at low frequencies, could also be responsible for the presence of ferroelastic domains up to high temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656463PMC
http://dx.doi.org/10.1038/s41598-020-75859-zDOI Listing

Publication Analysis

Top Keywords

high-temperature dielectric
8
dielectric response
8
[formula text]
8
mechanical response
8
temperature frequency
8
unveiling high-temperature
4
dielectric
4
response
4
response [formula
4
text] understanding
4

Similar Publications

Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.

View Article and Find Full Text PDF

Linear Dielectric Polymers with Ferroelectric-Like Crystals for High-Temperature Capacitive Energy Storage.

Adv Mater

January 2025

Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed.

View Article and Find Full Text PDF

High-entropy engineered BaTiO-based ceramic capacitors with greatly enhanced high-temperature energy storage performance.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Ceramic capacitors with ultrahigh power density are crucial in modern electrical applications, especially under high-temperature conditions. However, the relatively low energy density limits their application scope and hinders device miniaturization and integration. In this work, we present a high-entropy BaTiO-based relaxor ceramic with outstanding energy storage properties, achieving a substantial recoverable energy density of 10.

View Article and Find Full Text PDF

Traditional photosensitive polyimide (PSPI) materials require a high curing temperature and exhibit low transparency, limiting their applications in thermally sensitive optical devices. To overcome this challenge, soluble photosensitive polyimide resins were synthesized based on the structural design of a bio-based magnolol monomer. It is noteworthy that the PI photoresist, developed by using the as-prepared polyimides and non-toxic solvents (2-acetoxy-1-methoxypropane, PGEMA) and other additives, demonstrated an impressive low-temperature curing performance (180 °C).

View Article and Find Full Text PDF

Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance.

Nat Commun

January 2025

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!