Evaluation of sewage sludge biochar and modified derivatives as novel SPE adsorbents for monitoring of bisphenol A.

Chemosphere

Department of Electronics Engineering, School of Engineering, Hellenic Mediterranean University, Chania, Crete, 73100, Greece. Electronic address:

Published: April 2021

Sewage sludge is abundant biomass, the sustainable management of which remains a big issue worldwide. It was demonstrated that pyrolysis of sewage sludge using simple and cost-effective apparatus can produce biochars, suitable for solid-phase extraction applications of hydrophobic analytes. Detailed characterization showed that modification lead to three more hydrophobic and one more hydrophilic sample, compared to the original biochar. All samples were evaluated in the solid-phase extraction of the emerging contaminant Bisphenol A from aqueous solutions. KOH-SSB and KOH/MeOH-SSB exhibited the most promising behavior, with the latter achieving recoveries of 88.1%, at a quantity of 0.1 g at the natural pH of the BPA solution (6.5). The effect of solution pH was insignificant in the range of 4-7, whereas the initial BPA concentration had no effect in the recovery within the range of 1-100 μg L. The mechanism of interaction between the optimum sample and BPA was based on hydrogen bonding and π-π interactions, establishing earlier observations that the type (and not concentration) of individual surface groups and the total surface area play a significant role in the process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128866DOI Listing

Publication Analysis

Top Keywords

sewage sludge
12
solid-phase extraction
8
evaluation sewage
4
sludge biochar
4
biochar modified
4
modified derivatives
4
derivatives novel
4
novel spe
4
spe adsorbents
4
adsorbents monitoring
4

Similar Publications

Clustering-Based Thermography for Detecting Multiple Substances Under Large-Scale Floating Covers.

Sensors (Basel)

December 2024

Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

This study presents a novel approach for monitoring waste substrate digestion under high-density polyethylene (HDPE) geomembranes in sewage treatment plants. The method integrates infrared thermal imaging with a clustering algorithm to predict the distribution of various substrates beneath Traditional outdoor large-scale opaque geomembranes, using solar radiation as an excitation source. The technique leverages ambient weather conditions to assess the thermal responses of HDPE covers.

View Article and Find Full Text PDF

Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment.

View Article and Find Full Text PDF

The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.

View Article and Find Full Text PDF

A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.

View Article and Find Full Text PDF

, a prevalent foodborne pathogen, poses a significant social and economic strain on both food safety and public health. The application of phages in the control of foodborne pathogens represents an emerging research area. In this study, phage vB_SpuM_X5 (phage X5) was isolated from chicken farm sewage samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!