AI Article Synopsis

  • A new method using Rh(III) as a catalyst allows for the creation of bicyclic [1,3,5]triazinones by combining imines with ethyl (pivaloyloxy)carbamate.
  • This method shows flexibility, successfully producing various [5,6]- and [6,6]-bicyclic compounds with different aryl, alkyl, and alkoxy group substitutions.
  • The process was made more efficient through a three-component reaction that forms imines on the spot, and X-ray crystallography confirms the structure of an intermediate rhodacycle, supporting the reaction mechanism.

Article Abstract

A Rh(III)-catalyzed synthesis of bicyclic [1,3,5]triazinones from a diverse array of imines coupled with ethyl (pivaloyloxy)carbamate is reported. The preparation of [5,6]- and [6,6]-bicyclic heterocycles substituted with aryl, alkyl, and alkoxy groups demonstrated a broad reaction scope. The efficiency of this approach was further enhanced with the development of a three-component variant featuring in situ imine formation. X-ray crystallographic characterization of a rhodacycle formed by imidoyl C-H activation provides support for the proposed mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702018PMC
http://dx.doi.org/10.1021/acs.orglett.0c03393DOI Listing

Publication Analysis

Top Keywords

imidoyl c-h
8
bicyclic [135]triazinones
8
rhiii-catalyzed imidoyl
4
c-h carbamylation
4
carbamylation cyclization
4
cyclization bicyclic
4
[135]triazinones rhiii-catalyzed
4
rhiii-catalyzed synthesis
4
synthesis bicyclic
4
[135]triazinones diverse
4

Similar Publications

Synthesis of CF-Indazoles via Rh(III)-Catalyzed C-H [4+1] Annulation of Azobenzenes with CF-Imidoyl Sulfoxonium Ylides.

Molecules

January 2025

Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, China.

An efficient Rh(III)-catalyzed C-H activation of azobenzenes and subsequent [4+1] cascade annulation with CF-imidoyl sulfoxonium ylides was developed, yielding diverse CF-indazoles. This protocol featured easily available starting materials, excellent functional group tolerance and high efficiency. Moreover, the antitumor activities of selected CF-indazoles against human cancer cell lines were also studied, and the results indicated that several compounds displayed considerable antiproliferative activities.

View Article and Find Full Text PDF

Condition-Controlled Rh(III)-Catalyzed Chemodivergent Cyclization of 2-Arylpyridines with CF-Imidoyl Sulfoxonium Ylides via Triple C-H Activation.

Org Lett

January 2025

Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.

A condition-controlled Rh(III)-catalyzed selective synthesis of CF-substituted indoles and pyrido[2,1-]isoindoles from 2-arylpyridines and CF-imidoyl sulfoxonium ylides has been developed. The Cp*Rh(MeCN)(SbF)/HFIP system afforded CF-substituted indoles via triple C-H activation, while the [Cp*RhCl]/MeCN condition selectively furnished CF-substituted pyrido[2,1-]isoindoles through C-H [4 + 1] annulation. The notable advantages of this developed method included readily available starting materials, broad substrate scope, and excellent chemoselectivity.

View Article and Find Full Text PDF

An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.

View Article and Find Full Text PDF

A palladium-catalyzed [4 + 1] annulation of -arylimidoyl chlorides with β-keto esters has been developed. In the presence of Pd(OAc), PCy, and KPO, a variety of fluoalkyl-containing -arylimidoyl chlorides smoothly underwent the cascade C-H imidoylation/deacylative Heck-type reactions to afford biologically important 2-fluoroalkyl indoles in moderate to good yields.

View Article and Find Full Text PDF

Synthesis of CF-Isoquinolinones and Imidazole-Fused CF-Isoquinolinones Based on C-H Activation-Initiated Cascade Reactions of 2-Aryloxazolines.

J Org Chem

July 2024

Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

Presented herein are novel syntheses of CF-isoquinolinones and imidazole fused CF-isoquinolinones based on the cascade reactions of 2-aryloxazolines with trifluoromethyl imidoyl sulfoxonium ylides. The formation of CF-isoquinolinone involves an intriguing cascade process including oxazolinyl group-assisted aryl alkylation through C(sp)-H bond metalation, carbene formation, migratory insertion, and proto-demetalation followed by intramolecular condensation and water-promoted oxazolinyl ring-scission. With this method, the isoquinolinone scaffold tethered with valuable functional groups was effectively constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!