Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex.

Biochemistry

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States.

Published: November 2020

Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034803PMC
http://dx.doi.org/10.1021/acs.biochem.0c00666DOI Listing

Publication Analysis

Top Keywords

influenza virus
8
ns1
8
pabp1
8
ns1 binds
8
3'-polya tail
8
virus ns1
4
protein
4
ns1 protein
4
protein binds
4
binds dimer
4

Similar Publications

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

Long-term multi-systemic complications following SARS-CoV-2 Omicron and Delta infection in children: a retrospective cohort study.

Clin Microbiol Infect

December 2024

National Centre for Infectious Diseases, Singapore; Duke-NUS Graduate Medical School, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ministry of Health, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.

Objectives: Most studies on long-term sequelae of SARS-CoV-2-infection in children were conducted pre-Omicron and pre-dated vaccination rollout. We examined long-term risk of new-incident multi-systemic sequelae after SARS-CoV-2 Delta/Omicron infection in a multi-ethnic Asian pediatric population.

Methods: Retrospective cohort study of Singaporean children aged 1- 17 years infected during Delta/Omicron BA.

View Article and Find Full Text PDF

Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50% inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.

Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.

View Article and Find Full Text PDF

Seasonal shifts in respiratory pathogen co-infections and the associated differential induction of cytokines in children.

Cytokine

December 2024

Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

In the post-pandemic era, research on respiratory diseases should refocus on pathogens other than the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Respiratory pathogens, highly infectious to children, with to different modes of infection, such as single-pathogen infections and co-infections. Understanding the seasonal patterns of these pathogens, alongside identifying single infections and co-infections and their impact on the pediatric immune status, is crucial for clinical diagnosis, treatment, and prognosis in children.

View Article and Find Full Text PDF

Impact of influenza immune imprinting on immune responses to subsequent vaccinations in mice.

Vaccine

December 2024

Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA. Electronic address:

The immune memory imprinted during an individual's initial influenza exposure (influenza imprinting) has long-lasting effects on the host's response to subsequent influenza infections and vaccinations. Here, we investigate how different influenza virus imprinting impacts the immune responses to subunit, inactivated virus, and protein-based nanoparticle vaccines in Balb/c mice. Our results indicated a phylogenetic distance-dependent effect of influenza imprinting on subunit hemagglutinin (HA) or formalin-inactivated (FI) virus vaccine immunizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!