Lymphatic vessels are regarded as the "forgotten" circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694641 | PMC |
http://dx.doi.org/10.3390/cancers12113290 | DOI Listing |
Mol Biol Rep
January 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Otorhinolaryngology, No. 971 Hospital of People's Liberation Army Navy, Qingdao 266000, Shandong Province, China.
Hearing loss (HL) is an otolaryngology disease susceptible to environmental pollutants. Volatile organic compounds (VOCs), as a class of chemical pollutants with evaporation propensity, pose a great threat to human health. However, the association between VOCs and HL remains unclear.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
Purpose: Previous studies have shown that long non-coding RNA GUSBP11 is abnormally expressed in patients with periodontitis, but the specific mechanism remains to be investigated. The purpose of this study was to explore the role of GUSBP11/miR-185-5p in chronic periodontitis (CP) and its potential mechanism, so as to provide a basis for elucidating the pathogenesis of CP.
Patients And Methods: The expression trends of GUSBP11 and miR-185-5p in gingival crevicular fluid of CP patients and control group were analyzed by RT-qPCR.
Front Immunol
January 2025
Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The Aryl Hydrocarbon Receptor (AhR) pathway significantly influences immune cell regulation, impacting the effectiveness of immunotherapy and patient outcomes in melanoma. However, the specific downstream targets and mechanisms by which AhR influences melanoma remain insufficiently understood.
Methods: Melanoma samples from The Cancer Genome Atlas (TCGA) and normal skin tissues from the Genotype-Tissue Expression (GTEx) database were analyzed to identify differentially expressed genes, which were intersected with a curated list of AhR-related pathway genes.
Front Immunol
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!