The Stage-Specific Plasticity of Descending Modulatory Controls in a Rodent Model of Cancer-Induced Bone Pain.

Cancers (Basel)

Central Modulation of Pain Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK.

Published: November 2020

Pain resulting from metastatic bone disease is a major unmet clinical need. Studying spinal processing in rodent models of cancer pain is desirable since the percept of pain is influenced in part by modulation at the level of the transmission system in the dorsal horn of the spinal cord. Here, a rodent model of cancer-induced bone pain (CIBP) was generated following syngeneic rat mammary gland adenocarcinoma cell injection in the tibia of male Sprague Dawley rats. Disease progression was classified as "early" or "late" stage according to bone destruction. Even though wakeful CIBP rats showed progressive mechanical hypersensitivity, subsequent in vivo electrophysiological measurement of mechanically evoked deep dorsal horn spinal neuronal responses revealed no change. Rather, a dynamic reorganization of spinal neuronal modulation by descending controls was observed, and this was maladaptive only in the early stage of CIBP. Interestingly, this latter observation corresponded with the degree of damage to the primary afferents innervating the cancerous tissue. Plasticity in the modulation of spinal neuronal activity by descending control pathways reveals a novel opportunity for targeting CIBP in a stage-specific manner. Finally, the data herein have translational potential since the descending control pathways measured are present also in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716240PMC
http://dx.doi.org/10.3390/cancers12113286DOI Listing

Publication Analysis

Top Keywords

spinal neuronal
12
rodent model
8
model cancer-induced
8
cancer-induced bone
8
bone pain
8
dorsal horn
8
horn spinal
8
descending control
8
control pathways
8
pain
5

Similar Publications

Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.

Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.

View Article and Find Full Text PDF

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Spinal cord injury (SCI) represents a severe type of central nervous system damage, with no effective treatment currently available, partly due to neuronal ferroptosis and subsequent neuroinflammation. Punicalagin, an anti-inflammatory compound extracted from pomegranate peel, has exhibited therapeutic potential for inflammatory diseases. In this study, we present evidence that punicalagin facilitates the recovery of neurological function following SCI by mitigating neuronal ferroptosis.

View Article and Find Full Text PDF

Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans.

PLoS Genet

January 2025

Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!