Extracellular Vesicles Released by Enterovirus-Infected EndoC-βH1 Cells Mediate Non-Lytic Viral Spread.

Microorganisms

Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.

Published: November 2020

While human enteroviruses are generally regarded as a lytic virus, and persistent non-cytolytic enterovirus infection in pancreatic beta cells has been suspected of playing a role in type 1 diabetes pathogenesis. However, it is still unclear how enteroviruses could exit the pancreatic beta cell in a non-lytic manner. This study aimed to investigate the role of beta cell-derived extracellular vesicles (EVs) in the non-lytic enteroviral spread and infection. Size-exclusion chromatography and antibody-based immunoaffinity purification were used to isolate EVs from echovirus 16-infected human beta EndoC-βH1 cells. EVs were then characterized using transmission electron microscopy and Multiplex Bead-Based Flow Cytometry Assay. Virus production and release were quantified by 50% cell culture infectious dose (CCID) assay and qRT-PCR. Our results showed that EVs from echovirus 16-infected EndoC-βH1 cells harbor infectious viruses and promote their spread during the pre-lytic phase of infection. Furthermore, the EVs-mediated infection was not inhibited by virus-specific neutralizing antibodies. In summary, this study demonstrated that enteroviruses could exit beta cells non-lytically within infectious EVs, thereby thwarting the access of neutralizing antibodies to viral particles. These data suggest that enterovirus transmission through EVs may contribute to viral dissemination and immune evasion in persistently infected beta cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695210PMC
http://dx.doi.org/10.3390/microorganisms8111753DOI Listing

Publication Analysis

Top Keywords

endoc-βh1 cells
12
beta cells
12
extracellular vesicles
8
pancreatic beta
8
enteroviruses exit
8
evs echovirus
8
echovirus 16-infected
8
neutralizing antibodies
8
cells
6
beta
6

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!