The present study investigates whether predictions during language comprehension are generated by engaging the language production system. Previous studies investigating either prediction or production highlighted M/EEG desynchronization (power decrease) in the alpha (8-10 Hz) and beta (13-30 Hz) frequency bands preceding the target. However, it is unclear whether this electrophysiological modulation underlies common mechanisms. We recorded EEG from participants performing both a comprehension and a production task in two separate blocks. Participants listened to high and low constraint incomplete sentences and were asked either to name a picture to complete them (production) or to simply listen to the final word (comprehension). We found that in a silent gap before the final stimulus, predictable stimuli elicited alpha and beta desynchronization in both tasks, signaling the pre-activation of linguistic information. Source estimation highlighted the involvement of left-lateralized language areas and temporo-parietal areas in the right hemisphere. Furthermore, correlations between the desynchronizations in comprehension and production showed spatiotemporal commonalities in language-relevant areas of the left hemisphere. As proposed by prediction-by-production models, our results suggest that comprehenders engage the production system while predicting upcoming words.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2020.09.026 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.
Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.
J Child Lang
January 2025
The Graduate Center, City University of New York, New York City, NY, USA.
This study will investigate how children acquire the option to drop the subject of a sentence, or null subjects (e.g., "Tickles me" instead of "He tickles me").
View Article and Find Full Text PDFJ Child Lang
January 2025
Cognitive Science, Johns Hopkins University, Baltimore, MDUSA.
English-speaking children sometimes make errors in production and comprehension of biclausal questions, known as "Scope-Marking Errors". In production, these errors surface as medial wh questions (e.g.
View Article and Find Full Text PDFInsulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China.
Cucumber () trichomes play a critical role in resisting external biological and abiotic stresses. Glandular trichomes are particularly significant as they serve as sites for the synthesis and secretion of secondary metabolites, while non-glandular trichomes are pivotal for determining the appearance quality of cucumbers. However, current methods for separating trichomes encounter challenges such as low efficiency and insufficient accuracy, limiting their applicability in multi-omics sequencing studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!