Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2020.09.011DOI Listing

Publication Analysis

Top Keywords

rnai therapeutics
12
rnai
8
infections gene
8
gene silencing
8
therapeutics antiviral
4
antiviral strategy
4
strategy human
4
human infections
4
silencing induced
4
induced rnai
4

Similar Publications

Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.

Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.

View Article and Find Full Text PDF

The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.

View Article and Find Full Text PDF

Targeting NUCKS1 with a fragment of tRNA of Chinese yew for the treatment of colorectal cancer.

Noncoding RNA Res

April 2025

State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China.

Despite the discovery of numerous oncogenes in colorectal cancer (CRC), the development of associated drugs is limited, posing a significant challenge for CRC treatment. Identification of novel druggable targets is therefore crucial for the therapeutic development of CRC. Here, we report the first investigation on therapeutics targeting the potent oncogene NUCKS1 to suppress cancer progression.

View Article and Find Full Text PDF

RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication.

View Article and Find Full Text PDF

Diving into RNAi Therapy: An Inhalable Formulation Based on Lipid-Polymer Hybrid Systems for Pulmonary Delivery of siRNA.

Biomacromolecules

January 2025

Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.

Here, a pulmonary formulation based on lipid-polymer hybrid nanoparticles carrying small interfering RNA (siRNA) was developed to realize a RNA interference-based therapy to treat respiratory diseases. Toward this aim, a new copolymer was synthesized, by functionalization of the α,β-poly(-2-hydroxyethyl)-d,l-aspartamide with 35 mol % of 1,2-bis(3-aminopropylamino)ethane, 0.4 mol % of fluorescent dye, and 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!