As a commercial adsorbent, TiO shows a high adsorption capacity for lead (Pb(II)). However, the molecular structure of Pb(II) adsorption on TiO is still unknown. Meanwhile, as a widely used corrosion inhibitor, phosphate (PO) is usually added into drinking water, and its influential mechanism on Pb(II) removal by TiO remains unknown. Here, the mechanisms of Pb(II) adsorption on TiO and the effect of PO were systematically investigated using a combination of spectroscopic analyses and surface complexation modeling. The adsorption structure of Pb(II) on TiO was revealed as a tridentate mononuclear configuration by the extended X-ray absorption fine structure (EXAFS) analysis. In the presence of 0.1-5 mg/L PO, Pb(II) was removed mainly by adsorption on TiO rather than precipitation. Ternary complexation between Pb(II) and PO on TiO surfaces was found based on EXAFS and in situ Fourier transform infrared characterizations. These complexation structures were used to build a surface complexation model to accurately simulate and predict Pb(II) removal under different conditions. This study provides essential information about the mechanisms of Pb(II) removal by TiO and develops a model to predict adsorption behaviors, especially in the presence of PO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02388 | DOI Listing |
J Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.
Heavy metal ions are acknowledged to impact the environment and human health adversely. CNCs are effective materials for removing heavy metal ions in industrial applications and process innovations since they can be used in static and dynamic adsorption processes. Cost-effective, uncomplicated water treatment technologies must be developed using biodegradable polymers, namely, modified cellulose nanocrystals.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:
The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:
Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!