This study presents an ultraviolet (UV)-curable polymer which is applicable to open-access microfluidic platforms. The UV-curable polymer was prepared by mixing trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), polyethylene glycol-diacrylate (PEG-DA), and Irgacure 184. The polymer resin is optically transparent before and after UV-assisted curing and showed good biocompatibility when culturing multiple types of cells on the nanopatterned polymer substrate. The polymer has good adhesion with poly(dimethylsiloxane) (PDMS) even under large deformation and showed a low swelling ratio when exposed to water, suggesting a possibility to be used as a substrate for an organ on a chip. Furthermore, because the polymers have controllable hydrolysis ability depending on the composition, long-term 3D cell culture and subsequent biological analysis with harvested cells are possible. The self-detachable synthesized UV-curable polymer may help the advancement of biomedical studies using in vitro cell culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0lc00604a | DOI Listing |
Polymers (Basel)
January 2025
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate photosensitive resin is synthesized by using epoxidized soybean oil as a raw material and reacting it with acrylic acid.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
This work introduces an ultraviolet (UV)-curable elastomer through the co-polymerization of aliphatic polyurethane acrylate and hydroxypropyl acrylate via UV irradiation. The UV-curable elastomer presents superior mechanical properties (elongation at a break of 2992%) and high transparency (94.8% at 550 nm in the visible light region).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, PR China.
The interfacial interactions between the enhanced nanoscale components and the polymer matrix, as well as the photopolymerization behavior of the composite system, are of paramount importance to the quality and performance of photo-curable nanocomposites. Cellulose nanocrystals (CNCs), a novel class of green reinforcing materials, are anticipated to facilitate the development of high-performance applications of advanced functional materials. Herein, the promoting and enhancing effects of modified CNCs on photo-curable nanocomposites are studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!