In this article, we propose a novel economic model-predictive control (MPC) algorithm for a group of disturbed linear systems and implement it in a distributed manner. The system consists of multiple subsystems interacting with each other via dynamics and aims to optimize an economic objective. Each subsystem is subject to constraints both on states and inputs as well as unknown but bounded disturbances. First, we divide the computation of control inputs into several local optimization problems based on each subsystem's local information. This is done by introducing compatibility constraints to confine the difference between the actual information and the previously published reference information of each subsystem, which is the key feature of the proposed distributed algorithm. Then, to ensure the satisfaction of both state and input constraints under disturbances, constraints are tightened on the state and the input of nominal systems by considering explicitly the effect of uncertainties. Moreover, based on an overall optimal steady state, a dissipativity constraint and a terminal constraint are designed and incorporated in the local optimization problems to establish recursive feasibility and guarantee stability for the resulting closed-loop system. Finally, the efficiency of the distributed economic MPC algorithm is demonstrated in a building temperature control case study.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2020.3030021DOI Listing

Publication Analysis

Top Keywords

distributed economic
8
economic mpc
8
linear systems
8
mpc algorithm
8
local optimization
8
optimization problems
8
state input
8
distributed
4
mpc dynamically
4
dynamically coupled
4

Similar Publications

Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.

View Article and Find Full Text PDF

This study aims to investigate the complex relationship between vertical fiscal imbalance, public expenditure structure, and income distribution disparities, with the goal of providing policy insights for achieving shared prosperity. Employing Generalized Method of Moments (GMM) and threshold analysis, the research reveals key findings: (1) an exacerbation of vertical fiscal imbalance significantly widens the urban-rural income gap; (2) public expenditure structure exhibits threshold effects, resulting in non-linear impacts on income disparity; (3) a unique contribution of our study is the identification of varying threshold effects of urban public expenditure on income disparities within rural areas, urban areas, and the gap between them, underscoring the need for targeted fiscal interventions. These findings highlight the critical role of public expenditure in addressing income distribution issues and offer valuable guidance for upcoming fiscal and tax reforms.

View Article and Find Full Text PDF

Anomaly detection is crucial in areas such as financial fraud identification, cybersecurity defense, and health monitoring, as it directly affects the accuracy and security of decision-making. Existing generative adversarial nets (GANs)-based anomaly detection methods overlook the importance of local density, limiting their effectiveness in detecting anomaly objects in complex data distributions. To address this challenge, we introduce a generative adversarial local density-based anomaly detection (GALD) method, which combines the data distribution modeling capabilities of GANs with local synthetic density analysis.

View Article and Find Full Text PDF

The study analyzed the spatial distribution characteristics, evolution rules, and driving factors of 138 China's national agricultural cultural heritage sites from 2013 to 2021 at the overall and regional levels, using kernel density analysis, Centres for standard deviation ellipse analyses, spatial autocorrelation analysis, and geographical detector analysis.The results showed that: ①From an overall perspective, the spatial pattern of China's national agricultural cultural heritage changed greatly from 2013 to 2021, with a highly uneven spatial distribution, gradually showing a distribution pattern of "widely distributed, locally concentrated". The spatial distribution of China's national agricultural cultural heritage is increasingly evident, and the spatial distribution type has evolved from discrete to clustered.

View Article and Find Full Text PDF

Representational geometry explains puzzling error distributions in behavioral tasks.

Proc Natl Acad Sci U S A

January 2025

Department of Economics, Columbia University, New York, NY 10027.

Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!