Background And Aim: Next generation sequencing (ngs) is becoming the standard for clinical diagnosis. Different steps of NGS, such as DNA extraction, fragmentation, library preparation and amplification, require handling of samples, making the process susceptible to contamination. In diagnostic environments, sample contamination with DNA from the same species can lead to errors in diagnosis. Here we propose a simple method to detect within-sample contamination based on analysis of the heterozygous single nucleotide polymorphisms allele ratio (AR).
Methods: A dataset of 38000 heterozygous snps was used to estimate the ar distribution. The parameters of the reference distribution were then used to estimate the contamination probability of a sample. Validation was performed using 12 samples contaminated to different levels.
Results: Results show that the method easily detects contamination of 20% or more. The method has a limit of detection of about 10%, threshold below which the number of false positives increases significantly.
Conclusions: The method can be applied to any type of ngs analysis and is useful for quality control. Being fast and easy to implement makes it ideal for inclusion in NGS pipelines to improve quality control of data and make results more robust.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023143 | PMC |
http://dx.doi.org/10.23750/abm.v91i13-S.10531 | DOI Listing |
Int J Surg
January 2025
Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University, Taoyuan, Taiwan.
Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.
Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.
Int J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Int J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFQ J Nucl Med Mol Imaging
January 2025
Section of Nuclear Medicine and Diagnostic Imaging, International Atomic Energy Agency, Vienna, Austria.
Background: One can assess cortical defects on the early images of [99mTc]Tc-MAG3 renography. We aimed to assess interobserver and intraobserver reproducibility for detecting renal cortical defects using [99mTc]Tc-MAG3 for adults and children; identify causes for poor inter- and intraobserver reproducibility and to assess the effect of the kidney to background ratio (KTBR) on reproducibility.
Methods: One hundred adult and 200 pediatric renograms were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!