Aim Of The Study: We investigated protective effect of sodium selenite (Se) on hypothyroidism-induced impairments in, Morris water maze (MWM), long-term potentiation (LTP) and hippocampal neurogenesis male Wistar rats aged of 2 months.

Materials And Methods: Hypothyroidism was induced by administration of propylthiouracil (Ptu, 1 mg/kg/d) solution to the rats from postnatal day 60 for 81 days with or without Se (0.5mg/kg/d). Neurogenesis was examined by Ki-67 immunohistochemical staining. Se values on plasma and hippocampus were measured with inductively coupled plasma-mass spectrometry (ICP-MS).

Results: Measurement of fT3 and fT4 levels confirmed that the fT3 levels, but not fT4, in Ptu-treated rats (5435.44±816.05 fg/ml, < 0.05) has returned to control values (8721.66±2567.68 fg/ml) by Se treatment (8661.65±711.43 fg/ml). Analysis of learning performance in water escape learning task showed that Se supplementation disappeared memory deficit in Ptu-treated rats as shown by significantly decreased time spent in the target quadrant (33.7±0.24% in control group; 26.1±0.48% in Ptu-group, < 0.05; 33.9±0.44 in Ptu+Se group), although there was no significant difference among groups in any measurement of learning performance on the last day. Considering LTP, Se supplementation improved the deficit in synaptic plasticity in Ptu-treated rats, as shown by significant increase in the excitatory postsynaptic potential slope (% 243±31 in control group; 172±49 in Ptu-group, < 0.05; 222±65 in Ptu+Se group) without affecting of the impairment in somatic plasticity. Se supplementation did not improve the decrease in the number of progenitor cells in the subgranular layer (SGL) of dentate gyrus (DG) of Ptu treated rats.

Conclusions: These findings suggest that selenium supplementation in hypothyroid patients may improve learning and memory disorders with different physiological mechanisms.HighlightsSe increased serum fT3 levels and hippocampus Se levels in hypothyroid rats.Se attenuated impairment of population spike-LTP in hypothyroid ratsHypothyroidism disrupts neurogenesis process in the dentate gyrus of hippocampus.Se supplementation could not increase new born cells in hypothyroid rats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00207454.2020.1835898DOI Listing

Publication Analysis

Top Keywords

ptu-treated rats
12
sodium selenite
8
synaptic plasticity
8
ft3 levels
8
learning performance
8
control group
8
ptu-group 005
8
ptu+se group
8
dentate gyrus
8
rats
6

Similar Publications

Hypothyroidism is one of the most prevalent thyroid pathologies, which causes oxidative stress by disrupting antioxidant mechanisms. In mammals, the thyroid glands regulate metabolism, development, and growth. Dysfunction of the thyroid gland can result in hypothyroidism, hyperthyroidism, thyroiditis, and thyroid cancer.

View Article and Find Full Text PDF

Since the focus in regulatory toxicology has drifted toward the identification of endocrine disruptors, the improvement in determination of alterations in the thyroid hormone system has become more important. THs are involved in several molecular processes important for a proper pre- and postnatal development so that disturbances can inter alia lead to incorrect brain maturation and/or disturbed metabolic processes (thermogenesis or lipolysis). In this publication, a new automated online solid-phase extraction (SPE)-liquid chromatography (LC)-tandem mass spectrometry (MS/MS, xLC-MS/MS) is introduced which simultaneously analyzes total T4, T3, rT3, T2, and T1.

View Article and Find Full Text PDF

Thyroid hormones are critical for healthy brain functions at every stage of life. Hypothyroidism can cause severe cognitive dysfunction in patients who do not receive adequate treatment. Although thyroid hormone replacement alleviates cognitive decline in hypothyroid patients, there are studies showing that there is no complete recovery.

View Article and Find Full Text PDF

The present study was performed to investigate the effect of maternal hypothyroidism and puberty onset in female rat pups. To do this, we employed propylthiouracil (PTU) to prepare a hypothyroid rat model. Pregnant rats were treated with PTU (0.

View Article and Find Full Text PDF

Aim Of The Study: We investigated protective effect of sodium selenite (Se) on hypothyroidism-induced impairments in, Morris water maze (MWM), long-term potentiation (LTP) and hippocampal neurogenesis male Wistar rats aged of 2 months.

Materials And Methods: Hypothyroidism was induced by administration of propylthiouracil (Ptu, 1 mg/kg/d) solution to the rats from postnatal day 60 for 81 days with or without Se (0.5mg/kg/d).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!