A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Historical climatic instability predicts the inverse latitudinal pattern in speciation rate of modern mammalian biota. | LitMetric

Historical climatic instability predicts the inverse latitudinal pattern in speciation rate of modern mammalian biota.

J Evol Biol

PIBiLab (Laboratorio de Pesquisas Integrativas em Biodiversidade), Federal University of Sergipe, São Cristóvão, Brazil.

Published: February 2021

Evolutionary rate explanations for latitudinal diversity gradients predict faster speciation and diversification rates in richer, older and more stable tropical regions (climatic stability hypothesis). Numerous modern lineages have emerged in high latitudes, however, suggesting that climatic oscillations can drive population divergence, at least among extratropical species (glacial refugia hypothesis). This conflicting evidence suggests that geographical patterns of evolutionary rates are more complicated than previously thought. Here, we reconstructed the complex evolutionary dynamics of a comprehensive data set of modern mammals, both terrestrial and marine. We performed global and regional regression analyses to investigate how climatic instability could have indirectly influenced contemporary diversity gradients through its effects on evolutionary rates. In particular, we explored global and regional patterns of the relationships between species richness and assemblage-level evolutionary rates and between evolutionary rates and climatic instability. We found an inverse relationship between evolutionary rates and species richness, especially in the terrestrial domain. Additionally, climatic instability was strongly associated with the highest evolutionary rates at high terrestrial latitudes, supporting the glacial refugia hypothesis there. At low latitudes, evolutionary rates were unrelated to climatic stability. The inverse relationship between evolutionary rates and the modern latitudinal diversity gradient casts doubt on the idea that higher evolutionary rates in the tropics underlie the current diversity patterns of modern mammals. Alternatively, the longer time spans for diversity to accumulate in the older and more stable tropics (and not high diversification rates) may explain the latitudinal diversity gradient.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.13737DOI Listing

Publication Analysis

Top Keywords

evolutionary rates
36
climatic instability
16
latitudinal diversity
12
evolutionary
11
rates
11
diversity gradients
8
diversification rates
8
older stable
8
climatic stability
8
glacial refugia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!