Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein ubiquitination regulates protein stability, cellular localization, and enzyme activity. Deubiquitinases catalyze the removal of ubiquitin from target proteins and reverse ubiquitination. USP13, a deubiquitinase, has been shown to regulate a variety of cellular responses including inflammation; however, the molecular regulation of USP13 has not been demonstrated. In this study, we revealed that USP13 is degraded in response to lipopolysaccharide (LPS) in Kupffer cells. USP13 levels are significantly decreased in inflamed organs, including liver tissues from septic mice. LPS reduces USP13 protein stability, not transcription, in Kupffer cells. Furthermore, LPS increases USP13 polyubiquitination. Inhibition of proteasome, but not lysosome or immunoproteasome, attenuates LPS-induced USP13 degradation, suggesting USP13 degradation is mediated by the ubiquitin-proteasome system. A catalytically inactive form of USP13 exhibits similar degree of degradation compared with USP13 wild-type, suggesting that USP13 degradation is not dependent on its activity. Furthermore, USP13 degradation is dependent on new protein synthesis. Inhibition of c-Jun N-terminal kinase (JNK) attenuates USP13 degradation, indicating that JNK-dependent new protein synthesis is necessary for USP13 degradation. This study reveals a molecular mechanism of regulation of USP13 degradation in Kupffer cells in response to bacterial endotoxin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987730 | PMC |
http://dx.doi.org/10.1002/jcp.30153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!