Macroenvironmental factors, including a patient's physical and social environment, play a role in cancer risk and progression. Our previous preclinical studies have shown that the enriched environment (EE) confers anti-obesity and anti-cancer phenotypes that are associated with enhanced adaptive immunity and are mediated by brain-derived neurotrophic factor (BDNF). Natural killer (NK) cells have anti-cancer and anti-viral properties, and their absence or depletion is associated with inferior clinical outcomes. In this study, we investigated the effects of EE on NK cell maturation following their depletion. Mice living in EE displayed a higher proportion of NK cells in the spleen, bone marrow, and blood, compared to those living in the standard environment (SE). EE enhanced NK cell maturation in the spleen and was associated with upregulation of BDNF expression in the hypothalamus. Hypothalamic BDNF overexpression reproduced the EE effects on NK cell maturation in secondary lymphoid tissues. Conversely, hypothalamic BDNF knockdown blocked the EE modulation on NK cell maturation. Our results demonstrate that a bio-behavior intervention enhanced NK cell maturation and was mediated at least in part by hypothalamic BDNF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212871PMC
http://dx.doi.org/10.1002/eji.201948358DOI Listing

Publication Analysis

Top Keywords

cell maturation
24
hypothalamic bdnf
16
enriched environment
8
effects cell
8
enhanced cell
8
cell
6
maturation
6
bdnf
6
environment enhances
4
enhances cell
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!