Predicting Alzheimer's conversion in mild cognitive impairment patients using longitudinal neuroimaging and clinical markers.

Brain Imaging Behav

Health Science Technology Group, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain.

Published: August 2021

Patients with mild cognitive impairment (MCI) have a high risk for conversion to Alzheimer's disease (AD). Early diagnose of AD in MCI subjects could help to slow or halt the disease progression. Selecting a set of relevant markers from multimodal data to predict conversion from MCI to probable AD has become a challenging task. The aim of this paper is to quantify the impact of longitudinal predictive models with single- or multisource data for predicting MCI-to-AD conversion and identifying a very small subset of features that are highly predictive of conversion. We developed predictive models of MCI-to-AD progression that combine magnetic resonance imaging (MRI)-based markers (cortical thickness and volume of subcortical structures) with neuropsychological tests. These models were built with longitudinal data and validated using baseline values. By using a linear mixed effects approach, we modeled the longitudinal trajectories of the markers. A set of longitudinal features potentially discriminating between MCI subjects who convert to dementia and those who remain stable over a period of 3 years was obtained. Classifier were trained using the marginal longitudinal trajectory residues from the selected features. Our best models predicted conversion with 77% accuracy at baseline (AUC = 0.855, 84% sensitivity, 70% specificity). As more visits were available, longitudinal predictive models improved their predictions with 84% accuracy (AUC = 0.912, 83% sensitivity, 84% specificity). The proposed approach was developed, trained and evaluated using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with a total of 2491 visits from 610 subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-020-00366-8DOI Listing

Publication Analysis

Top Keywords

predictive models
12
mild cognitive
8
cognitive impairment
8
alzheimer's disease
8
mci subjects
8
longitudinal predictive
8
longitudinal
7
conversion
6
models
5
predicting alzheimer's
4

Similar Publications

This study evaluated the factorial structure and invariance of the Multidimensional Assessment of Interoceptive Awareness-v2 (MAIA-2). We also investigated incremental validity of the MAIA-2 factors for predicting eating pathology beyond appetite-based interoception. US-based online respondents ( = 1294; =48.

View Article and Find Full Text PDF

Psychosocial risks and mental health of preschool care providers in Kuala Lumpur, Malaysia: a cross-sectional study.

BMC Psychol

January 2025

Health Department of Kuala Lumpur and Putrajaya, Health office of Lembah Pantai District, Ministry of Health, Kuala Lumpur, Malaysia.

Background: Child maltreatment in daycare is a public health issue. As childcare is stressful, high care provider negativity independently predicts more internalizing behaviour problems, affecting children's psycho-neurological development. This study aimed to determine psychosocial factors associated with the mental health of preschool care providers in Kuala Lumpur.

View Article and Find Full Text PDF

Background: Predicting burn-related mortality is vital for family counseling, triage, and resource allocation. Several of the burn-specific mortality prediction scores have been developed, including the Abbreviated Burn Severity Index (ABSI) in 1982. However, these scores are not tested for accuracy to support contemporary estimates of the global burden of burn injury.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!