The apelin/APJ system in the regulation of vascular tone: friend or foe?

J Biochem

Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan.

Published: April 2021

The apelin (APJ) receptor was originally cloned as a gene encoding a putative G protein-coupled receptor related to angiotensin receptor type I. To date, two endogenous peptide ligands for APJ have been identified: apelin and elabela/Toddler. The apelin/APJ system regulates blood pressure and vascular tone. The endothelial and smooth muscle apelin/APJ systems exert opposite actions in the regulation of vascular tone. Binding of apelin to endothelial APJ promotes the release of vasodilators, such as nitric oxide and prostacyclin, leading to vasodilation. Alternatively, binding of apelin to smooth muscle APJ induces vasoconstriction, although the molecular mechanisms of the apelin-induced vasoconstriction are poorly understood. Recently, a critical role for interaction of APJ with α1-adrenergic receptor in the apelin-induced vasoconstriction was reported. The action of apelin on vascular tone may depend upon blood vessel type or pathological condition. Although the apelin/APJ system could serve as a potential therapeutic target for hypertension and cardiovascular disease, the role of this system in various cell types appears to be complicated.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvaa129DOI Listing

Publication Analysis

Top Keywords

vascular tone
16
apelin/apj system
12
regulation vascular
8
smooth muscle
8
binding apelin
8
apelin-induced vasoconstriction
8
apelin
5
apj
5
apelin/apj
4
system regulation
4

Similar Publications

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

Background/objectives: Inadequate cardiovascular adaptation during pregnancy impairs endothelial function and vascular resistance, contributing to complications such as pre-eclampsia (PE) and gestational hypertension (GH). Neprilysin (NEP), a protease involved in vascular regulation, has been linked to PE, but its role in endothelial function and vascular adaptation remains unclear. This pilot study investigates the associations between soluble neprilysin (sNEP) and markers of vascular and renal function in high-risk pregnancies without PE.

View Article and Find Full Text PDF

Background: Obesity, a major risk factor for cardiovascular disease (CVD), is associated with hypertension and vascular dysfunction. Perivascular adipose tissue (PVAT), a metabolically active tissue surrounding blood vessels, plays a key role in regulating vascular tone. In obesity, PVAT becomes dysregulated which may contribute to vascular dysfunction; how sex impacts the remodelling of PVAT and thus the altered vascular contractility during obesity is unclear.

View Article and Find Full Text PDF

Human adipose depots are functionally distinct. Yet, recent single-nucleus RNA sequencing (snRNA-seq) analyses largely uncovered overlapping or similar cell-type landscapes. We hypothesized that adipocyte subtypes, differentiation trajectories and/or intercellular communication patterns could illuminate this depot similarity-difference gap.

View Article and Find Full Text PDF

Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!