Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-020-00809-4DOI Listing

Publication Analysis

Top Keywords

second messengers
8
metabolic switch
8
caulobacter crescentus
8
pppgpp c-di-gmp
8
regulatory networks
8
growth glucose
8
reciprocal growth
4
growth control
4
control competitive
4
competitive binding
4

Similar Publications

Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities.

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how intercellular calcium waves in Drosophila adipose tissues contribute to regulating multicellular responses, focusing on their dynamic behavior.
  • Adipokinetic Hormone (AKH), similar to glucagon in humans, is identified as the main driver of calcium activities in the larval fat tissue, promoting lipolysis through a novel mechanism that doesn’t involve gap junctions.
  • The research also finds that dietary amino acids can stimulate the release of AKH, which then enhances intracellular calcium levels and boosts lipid metabolism in adipose tissue.
View Article and Find Full Text PDF

Soybean mitogen-activated protein kinase GmMPK6 enhances drought tolerance.

Biochem Biophys Res Commun

January 2025

Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea. Electronic address:

Soybeans are a critical crop that provides both protein and oil. In response to environmental stresses, mitogen-activated protein kinases (MPKs) play a key role in transmitting stress signals to the nucleus to initiate stress-responsive actions. Drought stress reduces plant development and productivity but the specific MPK responsible for drought stress responses has not been previously identified.

View Article and Find Full Text PDF

Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.

Commun Biol

December 2024

Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.

Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!