A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. | LitMetric

AI Article Synopsis

  • This project developed a fast, fully-automated deep-learning method (CNN-DS) for segmenting hematomas and quantifying their volume in CT scans of patients with hemorrhagic stroke.
  • Using non-contrast whole-head CT scans from 55 patients, the method achieved a high accuracy with a Dice coefficient score of 0.84, outperforming older techniques.
  • The CNN-DS model processed scans significantly faster than previous models, showing potential for clinical use in improving stroke management efficiency.

Article Abstract

This project aimed to develop and evaluate a fast and fully-automated deep-learning method applying convolutional neural networks with deep supervision (CNN-DS) for accurate hematoma segmentation and volume quantification in computed tomography (CT) scans. Non-contrast whole-head CT scans of 55 patients with hemorrhagic stroke were used. Individual scans were standardized to 64 axial slices of 128 × 128 voxels. Each voxel was annotated independently by experienced raters, generating a binary label of hematoma versus normal brain tissue based on majority voting. The dataset was split randomly into training (n = 45) and testing (n = 10) subsets. A CNN-DS model was built applying the training data and examined using the testing data. Performance of the CNN-DS solution was compared with three previously established methods. The CNN-DS achieved a Dice coefficient score of 0.84 ± 0.06 and recall of 0.83 ± 0.07, higher than patch-wise U-Net (< 0.76). CNN-DS average running time of 0.74 ± 0.07 s was faster than PItcHPERFeCT (> 1412 s) and slice-based U-Net (> 12 s). Comparable interrater agreement rates were observed between "method-human" vs. "human-human" (Cohen's kappa coefficients > 0.82). The fully automated CNN-DS approach demonstrated expert-level accuracy in fast segmentation and quantification of hematoma, substantially improving over previous methods. Further research is warranted to test the CNN-DS solution as a software tool in clinical settings for effective stroke management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652921PMC
http://dx.doi.org/10.1038/s41598-020-76459-7DOI Listing

Publication Analysis

Top Keywords

fast fully-automated
8
fully-automated deep-learning
8
segmentation volume
8
volume quantification
8
non-contrast whole-head
8
cnn-ds solution
8
cnn-ds
6
deep-learning approach
4
approach accurate
4
accurate hemorrhage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: