Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Regular exercise is crucial for maintaining cognitive health throughout life. Recent evidence suggests muscle contractions during exercise release factors into the blood which cross into the brain and stimulate adult hippocampal neurogenesis. However, no study has tested whether muscle contractions alone are sufficient to increase adult hippocampal neurogenesis and improve behavioral performance. Adult male, C57BL/6J mice were anesthetized and exposed to bilateral hind limb muscle contractions (both concentric and eccentric) via electrical stimulation (e-stim) of the sciatic nerve twice a week for 8 weeks. Each session lasted approximately 20 min and consisted of a total of 40 muscle contractions. The control group was treated similarly except without e-stim (sham). Acute neuronal activation of the dentate gyrus (DG) using cFos immunohistochemistry was measured as a negative control to confirm that the muscle contractions did not activate the hippocampus, and in agreement, no DG activation was observed. Relative to sham, e-stim training increased DG volume by approximately 10% and astrogliogenesis by 75%, but no difference in neurogenesis was detected and no improvement in behavioral performance was observed. E-stim also increased astrogliogenesis in CA1/CA2 hippocampal subfields but not in the cortex. Results demonstrate that muscle contractions alone, in absence of DG activation, are sufficient to increase adult hippocampal astrogliogenesis, but not neurogenesis or behavioral performance in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652861 | PMC |
http://dx.doi.org/10.1038/s41598-020-76356-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!