Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703535 | PMC |
http://dx.doi.org/10.1073/pnas.2011147117 | DOI Listing |
PLoS One
January 2025
School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.
Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.
View Article and Find Full Text PDFJ Invest Dermatol
December 2024
Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Department of Dermatology, Ludwig-Maximilians University Hospital, Munich, Germany. Electronic address:
Lichen planus (LP) is a chronic inflammatory disease (ISD) affecting skin, mucosa, nail, and hair. Previous studies demonstrated a pivotal role of type 1 immunity in LP, as infiltrating T cells trigger apoptosis and necroptosis in the epidermis. In this study, we investigated the role of DAPK1 in LP with special focus on its role in mediating cell death and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!