Effects of silicon on the uptake and accumulation of arsenite and dimethylarsinic acid in rice (Oryza sativa L.).

J Hazard Mater

Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: May 2021

Accumulation of arsenite [As(III)] and dimethylarsinic acid (DMA) in rice grainsposes a threat to human health. Although silicon (Si) has been reported to reduce As uptake, the mechanisms involved are not fully understood. In this study, we first confirmed that the concurrent addition of Si and As in solution decreased As accumulation in rice. Then, the effect of Si previously deposited in shoots by the pretreatment of rice seedlings with Si for one week was investigated by using lsi2 mutant and its wild type. The uptake of both As(III) and DMA decreased in rice subjected concurrently to Si and As (III)/DMA in solution, without effects on OsLsi1 and OsLsi2 expression. This concurrent treatment also decreased total As concentration in the root cell walls and xylem sap, which might have restrained apoplastic transport of As to shoots. Silicon previously deposited in the shoots decreased root-to-shoot As(III) translocation and down-regulated OsLsi1, OsLsi2 and OsNRAMP1, but did not affect As concentration in the roots, and had no effect on DMA uptake and accumulation in shoots and roots either. This study sheds light on the role of silicon in solution and rice shoots in As(Ⅲ) and DMA uptake and transport by rice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124442DOI Listing

Publication Analysis

Top Keywords

uptake accumulation
8
accumulation arsenite
8
dimethylarsinic acid
8
deposited shoots
8
oslsi1 oslsi2
8
dma uptake
8
rice
7
uptake
5
shoots
5
effects silicon
4

Similar Publications

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) exposure is associated with radioiodine therapy resistance and dedifferentiation of differentiated thyroid cancer.

Environ Pollut

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. Electronic address:

Differentiated thyroid cancer (DTC) generally has a favorable prognosis, and radioactive iodine (RAI) therapy is typically used for metastatic DTC that continues to progress and poses life-threatening risks. However, resistance to RAI in metastatic DTC significantly impairs treatment effectiveness. This study aims to identify potential compounds that may influence RAI efficacy.

View Article and Find Full Text PDF

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!