Background: Recent sequencing projects on early-diverging metazoans such as cnidarians, have unveiled a rich innate immunity gene repertoire; however, little is known about immunity gene regulation in the host's early response against marine bacterial pathogens over time. Here, we used RNA-seq on the sea anemone Exaiptasia pallida (Ep) strain CC7 as a model to depict the innate immune response during the onset of infection with the marine pathogenic bacteria Vibrio parahaemolyticus (Vp) clinical strain O3:K6, and lipopolysaccharides (LPS) exposure. Pairwise and time series analyses identified the genes responsive to infection as well as the kinetics of innate immune genes over time. Comparisons between the responses to live Vp and purified LPS was then performed.
Results: Gene expression and functional analyses detected hundreds to thousands of genes responsive to the Vp infection after 1, 3, 6 and 12 h, including a few shared with the response to LPS. Our results bring to light the first indications that non-canonical cytoplasmic pattern recognition receptors (PRRs) such as NOD-like and RIG-I-like receptor homologs take part in the immune response of Ep. Over-expression of several members of the lectin-complement pathways in parallel with novel transmembrane and Ig containing ficolins (CniFLs) suggest an active defense against the pathogen. Although lacking typical Toll-like receptors (TLRs), Ep activates a TLR-like pathway including the up-regulation of MyD88, TRAF6, NF-κB and AP-1 genes, which are not induced under LPS treatment and therefore suggest an alternative ligand-to-PRR trigger. Two cytokine-dependent pathways involving Tumor necrosis factor receptors (TNFRs) and several other potential downstream signaling genes likely lead to inflammation and/or apoptosis. Finally, both the extrinsic and intrinsic apoptotic pathways were strongly supported by over-expression of effector and executioner genes.
Conclusions: To our knowledge, this pioneering study is first to follow the kinetics of the innate immune response in a cnidarian during the onset of infection with a bacterial pathogen. Overall, our findings reveal the involvement of both novel immune gene candidates such as NLRs, RLRs and CniFLs, and previously identified TLR-like and apoptotic pathways in anthozoan innate immunity with a large amount of transcript-level evidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654579 | PMC |
http://dx.doi.org/10.1186/s12864-020-07140-6 | DOI Listing |
Commun Biol
January 2025
Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Forestry, Nagaland University (Central), Lumami, -798627, Nagaland, India.
Toll-like receptors (TLRs) are crucial components of innate immunity. A specific form of genetic variation in TLR genes may increase the chance of developing leukemia. The present investigation conducted a comprehensive meta-analysis to examine the correlation between three TLR polymorphisms, namely TLR2 (rs3804099), TLR4 (rs4986790), and TLR9 (rs187084), within the leukemia risk group.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.
View Article and Find Full Text PDFNature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFNature
January 2025
Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!