Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation.

Membranes (Basel)

Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands.

Published: November 2020

Polymeric membranes are widely applied in biomedical applications, including in vitro organ models. In such models, they are mostly used as supports on which cells are cultured to create functional tissue units of the desired organ. To this end, the membrane properties, e.g., morphology and porosity, should match the tissue properties. Organ models of dynamic (barrier) tissues, e.g., lung, require flexible, elastic and porous membranes. Thus, membranes based on poly (dimethyl siloxane) (PDMS) are often applied, which are flexible and elastic. However, PDMS has low cell adhesive properties and displays small molecule ad- and absorption. Furthermore, the introduction of porosity in these membranes requires elaborate methods. In this work, we aim to develop porous membranes for organ models based on poly(trimethylene carbonate) (PTMC): a flexible polymer with good cell adhesive properties which has been used for tissue engineering scaffolds, but not in in vitro organ models. For developing these membranes, we applied evaporation-induced phase separation (EIPS), a new method in this field based on solvent evaporation initiating phase separation, followed by membrane photo-crosslinking. We optimised various processing variables for obtaining form-stable PTMC membranes with average pore sizes between 5 to 8 µm and water permeance in the microfiltration range (17,000-41,000 L/m/h/bar). Importantly, the membranes are flexible and are suitable for implementation in in vitro organ models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694515PMC
http://dx.doi.org/10.3390/membranes10110330DOI Listing

Publication Analysis

Top Keywords

organ models
24
vitro organ
16
phase separation
12
membranes
9
ptmc membranes
8
evaporation-induced phase
8
membranes applied
8
flexible elastic
8
porous membranes
8
cell adhesive
8

Similar Publications

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Purpose: The objective of this study was to explore the feasibility of using the TianJi Robot system for navigated needle positioning in the PCNL procedure in vitro.

Methods: A pig kidney with a segment of ureter was selected as the in vitro organ model. Iodine contrast agent was infused into the renal pelvis to dilate the renal pelvis and calyx to establish the in vitro hydronephrosis model.

View Article and Find Full Text PDF

Androgens differentially modulate glucocorticoid effects on adipose tissue and lean mass.

J Endocrinol

January 2025

V Dubois, Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Glucocorticoids and androgens affect each other in several ways. In metabolic organs such as adipose tissue and the liver, androgens enhance glucocorticoid-induced insulin resistance and promote fat accumulation in male mice. However, the direct contribution of the androgen receptor (AR) to these effects is unknown.

View Article and Find Full Text PDF

Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance.

Plant Cell Environ

January 2025

Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!