The increased attraction of biological volatile compounds has opened the route to a wide variety of sampling techniques, amongst which trap tubes packed with adsorbent materials are commonly used. Many types of adsorbent materials are available and the choice of the adsorbent can impact the obtained results in untargeted analysis. Therefore, a proper combination of the adsorbent material and the sample is necessary to increase the robustness and reproducibility of biological studies. In this study, the sampling performance of thermal desorption tubes with six common adsorbent material combinations, i.e., Tenax® TA, Tenax® TA/Carbopack™ B, Tenax® TA/Sulficarb, Tenax® TA/Carbograph™ 5TD, Tenax® TA/Carbograph™ 1TD/Carboxen® 1003, and Carboxen® 1016/Carbograph™ 5TD, was evaluated in two different setups: in vitro and in vivo sampling. The in vitro setup consisted of the headspace dynamic extraction of spiked serum, and a mixture of 19 standards was evaluated in terms of response and reproducibility. The in vivo setup consisted into two parts: the first one was based the evaluation of the standard mixture, which was flash-vaporised into Tedlar® bags containing exhaled breath; the second part was based on the longitudinal monitoring of breath metabolites originating from a beverage intake (i.e., brewed coffee), over a 90 min time period. The tubes were all desorbed and analysed in a comprehensive two-dimensional gas chromatography system coupled to a high-resolution time-of-flight mass spectrometer (GC × GC-HR ToF MS). In both sampling setups, the widest analytes coverage and the overall best extraction yield on the selected compounds were obtained using Tenax® TA, followed by Tenax® TA/Carbopack™ B. Tenax® TA provided the highest sampling reproducibility with 12 %RSD, 10 %RSD and <5 %RSD of the response during the experiments using the in vitro setup, the in vivo setup, and during the longitudinal tracking, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121569 | DOI Listing |
Sci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFSci Rep
January 2025
Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, POB 26666, Sharjah, United Arab Emirates.
Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sivas Cumhuriyet University, Dept. of Physiology, Faculty of Veterinary Medicine, 58140, Türkiye.
In this study, the interaction of waste snake skin (Periostracum serpentis), a keratin-based biowaste composite material, with uranyl ions, the predominant form of uranium in aqueous solutions, was investigated to determine whether it could be used as an adsorbent. SEM, FTIR, BET and EDX analyses were performed to elucidate the material's surface and structural properties. The effects of the amount of adsorbent, uranyl ion concentration, pH, temperature, and adsorption time were investigated to optimize uranium removal with this material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!