Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2020.105877 | DOI Listing |
Pediatr Pulmonol
January 2025
Department of Pediatrics and Adolescent Medicine, Danish PCD Centre, Danish Pediatric Pulmonary Service, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
J Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.
View Article and Find Full Text PDFCell Struct Funct
January 2025
College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!