To selectively target telomeric G-quadruplex (G4) DNA, monomeric and dimeric naphthalene diimides (NDIs) were investigated as binders of multimeric G4 structures able to discriminate duplex DNA. These NDIs were analysed by the affinity chromatography-based screening G4-CPG (G-quadruplex on Controlled Pore Glass), using the sequence d[AGGG(TTAGGG)] (tel46), folding into two consecutive G4s, as model of the human telomeric G4 multimer. In parallel, a telomeric G4 monomer (tel26) and a duplex structure (ds27) were used as controls. According to G4-CPG screening, NDI-5 proved to be the best ligand in terms of dimeric G4 vs. duplex DNA selectivity and was analysed by circular dichroism (CD), gel electrophoresis, isothermal titration calorimetry (ITC) and fluorescence spectroscopy in its interactions with tel46. NDI-5 strongly binds and stabilizes tel46 G4, favouring a hybrid folding in K-containing buffer. Under these conditions, the binding process comprises a first event involving three molecules of NDI-5 and a second one in which other six molecules bind to the DNA. In a metal cation-free system, NDI-5 induces tel46 G4 folding, as indicated by CD and PAGE, favouring an antiparallel structuring. Docking simulations showed that NDI-5 can effectively bind to the pocket between two G4 units, representing a promising ligand for multimeric G4s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.11.013DOI Listing

Publication Analysis

Top Keywords

naphthalene diimides
8
human telomeric
8
telomeric g-quadruplex
8
duplex dna
8
tel46 folding
8
ndi-5
5
binding naphthalene
4
diimides human
4
telomeric
4
g-quadruplex multimer
4

Similar Publications

The final outcomes of supramolecular assembly are determined by the pathways and the formation of intermediates during the assembly process. We studied pathway complexity involving two consecutive pathways in supramolecular polymerization of naphthalene-diimide (NDI) derivative molecule. Depending on preparation methods anisotropic aggregates of J-type nanorods (Agg I) or more flexible H-type nanofibers (Agg II) are obtained from the identical initial state in solution of methyl cyclohexane (MCH) or MCH/CHCl3 mixtures.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations.

View Article and Find Full Text PDF

A metal-organic framework with mixed electron donor and electron acceptor ligands for efficient lithium-ion storage.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.

View Article and Find Full Text PDF

Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.

View Article and Find Full Text PDF

Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!