A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity Real-Environment Solar-Thermal-Electric Conversion. | LitMetric

A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity Real-Environment Solar-Thermal-Electric Conversion.

ACS Nano

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

Published: November 2020

A solar thermoelectric generator (STEG) that generates electricity from sunlight is expected to be a promising technology for harvesting and conversion of clean solar energy. The integration of a phase-change material (PCM) with the STEG even more enables engines to durably generate power in spite of solar radiation flux. However, its photothermal conversion and output electricity is still limited (<15 W/m) by the PCM's deficient thermal management performance, .., restricted thermal conductivity and nonuniform heat-transfer behavior under concentrated sunlight radiation. In this study, a biomimetic phase-change composite, with centrosymmetric and a multidirectionally aligned boron nitride network embedded in polyethylene glycol, is tailored for the STEG a radial ice-template assembly and infiltration strategy, which behaves in a highly and multidirectionally thermoconductive way and enables a rapid transfer of heat flux and uniform temperature distribution with respect to even a spot-like heat source. As a consequence, a powerful STEG is tactfully designed the integration of this high-thermal-management characteristic and maximum collection of solar beams, for durable and real-environment solar-thermal-electric conversion, with its photothermal energy conversion efficiency of up to 85.1% and a high peak power density of 40.28 W/m.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c06680DOI Listing

Publication Analysis

Top Keywords

multidirectionally thermoconductive
4
thermoconductive phase
4
phase change
4
change material
4
material enables
4
enables high
4
high durable
4
durable electricity
4
electricity real-environment
4
real-environment solar-thermal-electric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!