Background: Maternal nicotine exposure during gestation and lactation adversely affect lung development of their children. High-mobility group box 1 (HMGB1) is the encoded non-histone, nuclear DNA-binding protein that regulates transcription, and is involved in organization of DNA. Receptors for advanced glycation end products (RAGE) is a receptor for HMGB1 and activates nuclear factor-κB (NF-κB) signaling. Animal and human studies have found cigarette smoke exposure upregulates RAGE expression, suggesting that the HMGB1-RAGE pathway might be involved in maternal nicotine-induced lung injury.
Methods: This study evaluated prenatal and perinatal nicotine effects on lung development and HMGB1 and RAGE expression in mouse offspring. Nicotine was administered to pregnant mice by subcutaneous osmotic mini-pump at a dose of 6 mg kg day from gestational Day 14 to birth (prenatal) or to postnatal Day 21 (perinatal). A control group received an equal volume of saline by the same route. Three study groups were obtained: prenatal normal saline (NS), prenatal nicotine, and perinatal nicotine groups. The mice were euthanized on postnatal Day 21, and the lung tissues were collected for histological and Western blot analyses.
Results: Mice exposed to prenatal nicotine exhibited significantly higher lung mean chord length and oxidative stress marker 8-hydroxy-2'-deoxyguanosine and NF-κB expression compared to mice exposed to NS. Perinatal nicotine exposure further enhanced these harmful effects. These perinatal nicotine effects on lung development were associated with increased HMGB1 and RAGE expression.
Conclusions: HMGB1-RAGE pathway may be involved in the pathogenesis of altered lung development induced by perinatal nicotine exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdr2.1840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!