Objective: To examine the role of high-fat and high-sugar (HFHS) diet-induced oxidative stress, which is a risk factor for various diseases, in premature ovarian failure (POF).
Materials And Methods: Ovarian granulosa cells (OGCs) were isolated from mice and cultured in medium supplemented with HFHS and poly (lactic-co-glycolic acid) (PLGA)-cross-linked miR-146b-5p nanoparticles (miR-146@PLGA). RNA and protein expression levels were examined using quantitative real-time polymerase chain reaction and Western blotting, respectively. HFHS diet-induced POF model mice were administered miR-146@PLGA.
Results: The ovarian tissue of mice fed a HFHS diet exhibited the typical pathological characteristics of POF. HFHS supplementation induced oxidative stress injury in the mouse OGCs, activation of the Dab2ip/Ask1/p38-Mapk signalling pathway and phosphorylation of γH2A.X in vitro and in vivo. The results of the luciferase reporter assay revealed that miR-146 specifically downregulated p38-Mapk14 expression. Meanwhile, co-immunoprecipitation and Western blot analyses revealed that HFHS supplementation upregulated nuclear p38-Mapk14 expression and consequently enhanced γH2A.X (Ser139) phosphorylation. The HFHS diet-induced POF mouse model treated with miR-146@PLGA exhibited downregulated p38-Mapk14 expression in the OGCs, mitigated OGC ageing and alleviated the symptoms of POF.
Conclusions: This study demonstrated that HFHS supplementation activates the Dab2ip/Ask1/p38-Mapk signalling pathway and promotes γH2A.X phosphorylation by inhibiting the expression of endogenous miR-146b-5p, which results in OGC ageing and POF development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791167 | PMC |
http://dx.doi.org/10.1111/cpr.12954 | DOI Listing |
Life Sci
January 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2024
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
Inorganic nitrate (NO) has been proposed to be of therapeutic use as a dietary supplement in obesity and related conditions including the Metabolic Syndrome (MetS), type-II diabetes and metabolic dysfunction associated steatotic liver disease (MASLD). Administration of NO to endothelial nitric oxide synthase-deficient mice reversed aspects of MetS, however the impact of NO supplementation in diet-induced obesity is not well understood. Here we investigated the whole-body metabolic phenotype and cardiac and hepatic metabolism in mice fed a high-fat high-sucrose (HFHS) diet for up to 12-months of age, supplemented with 1 mM NaNO (or NaCl) in their drinking water.
View Article and Find Full Text PDFMetabolism
January 2025
Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France. Electronic address:
Front Cell Dev Biol
October 2024
Biomedical Research and Innovation Center, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
Int J Mol Sci
August 2024
Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!