Central Blockade of E-Prostanoid 3 Receptor Ameliorated Hypertension Partially by Attenuating Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus of Spontaneously Hypertensive Rats.

Cardiovasc Toxicol

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China.

Published: April 2021

Hypertension, as one of the major risk factors for cardiovascular disease, significantly affects human health. Prostaglandin E (PGE) and the E3-class prostanoid (EP3) receptor have previously been demonstrated to modulate blood pressure and hemodynamics in various animal models of hypertension. The PGE2-evoked pressor and biochemical responses can be blocked with the EP3 receptor antagonist, L-798106 (N-[(5-bromo-2methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl) phenyl]-2-propenamide). In the hypothalamic paraventricular nucleus (PVN), sympathetic excitation can be introduced by PGE2, which can activate EP3 receptors located in the PVN. In such a case, the central knockdown of EP3 receptor can be considered as a potential therapeutic modality for hypertension management. The present study examined the efficacy of the PVN infusion of L-798106, by performing experiments on spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The rats were administered with chronic bilateral PVN infusion of L-798106 (10 μg/day) or the vehicle for 28 days. The results indicated that the SHRs had a higher mean arterial pressure (MAP), an increased Fra-like (Fra-LI) activity in the PVN, as well as a higher expression of gp, mitogen-activated protein kinase (MAPK), and proinflammatory cytokines in the PVN compared with the WKYs. Additionally, the expression of Cu/Zn-SOD in the PVN of the SHRs was reduced compared with the WKYs. The bilateral PVN infusion of L-798106 significantly reduced MAP, as well as plasma norepinephrine (NE) levels in the SHRs. It also inhibited Fra-LI activity and reduced the expression of gp, proinflammatory cytokines, and MAPK, whereas it increased the expression of Cu/Zn-SOD in the PVN of SHRs. In addition, L-798106 restored the balance of the neurotransmitters in the PVN. On the whole, the findings of the present study demonstrate that the PVN blockade of EP3 receptor can ameliorate hypertension and cardiac hypertrophy partially by attenuating ROS and proinflammatory cytokines, and modulating neurotransmitters in the PVN.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-020-09619-wDOI Listing

Publication Analysis

Top Keywords

ep3 receptor
16
pvn
12
pvn infusion
12
infusion l-798106
12
proinflammatory cytokines
12
partially attenuating
8
hypothalamic paraventricular
8
paraventricular nucleus
8
spontaneously hypertensive
8
hypertensive rats
8

Similar Publications

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Breast cancer became the most prevalent malignancy among women, and HER2 expression status is critical for treatment decisions. With the emergence of ADC drugs, HER2 low-expressing patients who previously did not respond well to traditional anti-HER2 therapies may now benefit. In this study, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were applied to assess HER2 expression in 349 patients with HER2-non-positive breast cancer.

View Article and Find Full Text PDF

Prostaglandins are naturally occurring local mediators that can participate in the modulation of the cardiovascular system through their interaction with Gs/Gi-coupled receptors in different tissues and cells, including platelets. Thrombin is one of the most important factors that regulates platelet reactivity and coagulation. Clinical trials have consistently shown that omega-3 fatty acid supplementation lowers the risk for cardiovascular mortality and morbidity.

View Article and Find Full Text PDF

EP4: A prostanoid receptor that modulates insulin signalling in rat skeletal muscle cells.

Cell Signal

February 2025

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:

The EP4 (prostaglandin E2) receptor plays a crucial role in myogenesis and skeletal muscle regeneration, yet its involvement in regulating insulin-dependent metabolic pathways is not well characterised. Our research investigates the expression of EP4 in rat skeletal L6 myotubes and its impact on insulin signalling. We found that activation of EP4 by selective agonists disrupts insulin signalling and insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

Prostaglandin E production in the brainstem parabrachial nucleus facilitates the febrile response.

Temperature (Austin)

September 2024

Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!