A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication, Optimization, and In Vitro and In Vivo Characterization of Intra-vitreal Implant of Budesonide Generally Made of PHBV. | LitMetric

Drug delivery to vitreous in comparison with drug delivery to the other parts of the eye is complicated and challenging due to the existence of various anatomical and physiological barriers. Developing injectable intra-vitreal implant could be beneficial in this regard. Herein, poly(hydroxybutyrate-co-valerate) (PHBV) implants were fabricated and optimized using response surface method for budesonide (BZ) delivery. The acquired implants were characterized in regard to the stability of the ingredients during fabrication process, drug loading amount, and drug release pattern (in PBS-HA-A and in vitreous medium). According to this research and statistical analysis performed, first HV% (hydroxyvalerate) then molecular weight and ratio of PEG as pore former affect respectively release rate and burst strength of BZ with different coefficients. Drug release profile in rabbit eye correlated well with that of in vitro (R = 0.9861, p ˂ 0.0001). No significant changes were seen in ERG waves, intraocular pressure, and histological studies during the in vivo part of the project. Using 8% HV, 20% PEG/PHBV, and higher molecular weight PEG (i.e., 6000), the optimum formulation was achieved. Toxicity and biocompatibility of the optimized formulation, which were evaluated in vivo, indicated the suitability of design implant for intra-vitreal BZ delivery. Grapical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-020-01828-4DOI Listing

Publication Analysis

Top Keywords

intra-vitreal implant
8
drug delivery
8
drug release
8
molecular weight
8
drug
5
fabrication optimization
4
optimization vitro
4
vitro vivo
4
vivo characterization
4
characterization intra-vitreal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!